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a b s t r a c t

Within the plane planetary problem we present two new approaches for the determination of purely
resonant eccentricity and semimajor axis variations in terms of simple, closed algebraic relationships. We
consider the motion of two Jovian exoplanets in 2:1, 3:1, and 7:4 resonance. Even with initial eccentri-
cities of 0.05, we have found two numerical examples of purely resonant motion of two Jovian exoplanets
in 2:1 and 3:1 resonance, fitting throughout the theoretical relationships for over 105 revolutions of the
outer exoplanet. The maximum eccentricities of the two Jovian exoplanets are 0.15< , if the initial ratio of
semimajor axes is 0.6992< and the initial eccentricities are 0.05≤ . During intervals of negligible secular
perturbations, the agreement between theoretical and numerical maximum resonant eccentricity var-
iations is generally much better than within a factor of 2. The theoretical and calculated maximum
eccentricity of a Plutino in 2:3 resonance with Neptune is 0.053> .

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Mean motion resonances in celestial mechanics have been
mainly studied with the Hamiltonian approach (e.g. Brown and
Shook, 1933, Secs. 8.15–8.27; Franklin et al., 1984; Murray and
Dermott, 1999, Secs. 8.8–8.11; Morbidelli, 2002). Instead, in this
paper we directly solve Lagrange's planetary equations for the
plane planetary problem with two finite masses m i, 1, 2i ( = ),
orbiting the large mass M m M, i( ⪡ ) in prograde orbits of moderate
eccentricity ei, having semimajor axes a a a, /i 1 2α( = ). This allows a
straightforward determination of the resonant variations of
eccentricity and semimajor axis of two resonant planets under the
form of simple, closed algebraic relationships.

The direct integration of the Lagrangian equations (2.4)–(2.9)
for purely resonant motion – as effected in this paper – has been
termed the pendulum model by Brown and Shook (1933, Secs.
8.5–8.14) and Murray and Dermott (1999, Secs. 8.4–8.7). This
approach to the resonance problem is presented in the textbooks
consecutively with the Hamiltonian approach (e.g. Brown and
Shook, 1933, Secs. 8.15–8.27; Murray and Dermott, 1999, Secs. 8.8–
8.11). A direct comparison of our simple algebraic relationships
with Hamiltonian theory seems possible only for the restricted
circular three-body problem (see end of Section 5).

Because the resonant variation of semimajor axis is connected
to resonant eccentricity variation by elementary relationships

(Eqs. (3.9), (3.24), and (4.7)), we concentrate on the variation of
eccentricity as a function of the resonance angle

j j k k . 1.1k k 2 2 1 1 1 1 2 21 2
φ λ λ ϖ ϖ= − − − ( )

The integers j k i, , 1, 2i i ( = ) are connected by d'Alembert's rule
j j k k 02 1 1 2− − − = (e.g. Murray and Dermott, 1999, Eq. (6.140)),
where j j 12 1> ≥ and k k k1, 0i1 2+ ≥ ( ≥ ). The mean longitudes of
the two planets are denoted by iλ and their pericenters by iϖ .

2. Basic equations

The disturbing functions Ri of the two planets are approxi-
mated only by the sum of secular and resonant perturbations Rs
and Rr:
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The gravitational constant is denoted by G. The secular and
resonant parts are to the lowest order in the eccentricities equal to
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K α( ) and L α( ) are the two principal secular coefficients,
B Bk k k k1 2 1 2

α= ( ) are the resonance coefficients, and bk
1/2( ) denotes the
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Laplace coefficient of index k and order 1/2. The relevant Lagrange
equations are (e.g. Brouwer and Clemence, 1961, pp. 284–286;
Stumpff, 1965, Sec. 133; Murray and Dermott, 1999, Secs. 6.8, 8.4):
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The superscripts s( ) and r( ) indicate secular and reso-
nant variations respectively, and the mean motion is
n t G M m a t/i i i

3 1/2( ) = [ ( + ) ( )] GM a/ consti
3 1/2≃( ) ≃ . The classical mean

longitude at epoch ϵi is connected to the modified mean longitude
at epoch iϵ⁎ by

n t n dt . 2.10i i i

t

i i0
∫λ = + ϵ = + ϵ ( )

⁎

There is 0 0 0i i iλ ( ) = ϵ ( ) = ϵ ( )⁎ and e a n R e e/2 / /2i i i i i i i i
2 2ϖϵ̇* = ( ) ∂ ∂ = ˙

O e e ni i i( )= ˙ ⪡ , since m M e/ , 1i i⪡ and n 1i ≃ if G M a, , 1i = . Thus,

n e, ,i i i iϖϵ̇ ⪡ ̇ ̇⁎ , and we can write n ni i i iλ ̇ = + ϵ̇ ≃⁎ . For the considered
modest eccentricities e 0.2i( ≲ ), the maximum relative resonant
variation of semimajor axes is small [ a a/ 1i iΔ ⪡ , Eq. (3.24)], so we
always approximate n K L B, , , ,i k k1 2

α on the right-hand sides of Eqs.
(2.4)–(2.9) by constants.

The net effect of purely resonant perturbations can be evi-
denced by neglecting in Eqs. (2.4)–(2.9) the secular eccentricity
perturbations e e e e,i i

r
i

s
i

r( ̇ ≈ ̇ | ̇ |⪡| ̇ |)( ) ( ) ( ) , and by approximating the
secular pericenter perturbation i

sϖ̇ ( ) with the constant Ki from Eq.
(2.11). These two approximations subsist in the following two
cases:

(i) In the circular restricted three-body problem m 01( = , e 02 →
or m e0, 02 1= → ), there is rigorously e 0, consti

s
i

sϖ̇ = ̇ =( ) ( ) , and
merely the k k j j, , 01 2 2 1( ) = ( − ) or j j0, 2 1( − ) resonance survives in
the sums from Eqs. (2.4) to (2.9).

(ii) If secular and resonant eccentricity changes are comparable
(as in our numerical examples from Figs. 3, 6, and 8), the secular
period of eccentricity variations turns out to be much longer than
the resonance period. Therefore, during a single resonance period,
the secular eccentricity variations are much smaller than the
resonant ones e ei

s
i

r(| ̇ |⪡| ̇ |)( ) ( ) , at least for our examples. For this reason,
and because in addition we calculate the theoretical resonant
eccentricity changes from Table 2 if , sin 02 1 2 1ϖ ϖ π ϖ ϖ− ≈ ( − ) ≈ ,
we neglect ei

ṡ ( ) with respect to ei
ṙ ( ) in Eqs. (3.3), (3.4), and (4.4).

Concerning the secular pericenter variations i
sϖ̇ ( ) from Eqs. (2.8)

and (2.9), we approximate cos 2 1ϖ ϖ( − ) during a single resonance
period by a constant, as argued previously. And because, according
to Eqs. (3.10), (4.6), and (4.8), resonant eccentricity variations
occur concomitantly, we may also take e e/ const1 2 ≈ . Hence, we
barely match the L-term of i

sϖ̇ ( ) during one resonance period by a
constant, adding it to the constant K-term:
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In Section 3 we solve with the previously mentioned approx-
imations the set of Lagrangian equations for a single specific
resonance: k consti = . And in Section 4 we consider concomitantly
all possible k k,1 2( ) combinations of a certain j j:2 1 resonance with
the additional approximations e e Kconst,i i i i0 ϖ≈ = ̇ ≈ , and

02 1ϖ ϖ− ≈ or , 0 22 1π ϖ ϖ π( ≤ − < ).

3. Resonant motion for a single specific k k,1 2( ) resonance

With the approximations k e econst,i i i
r= ̇ = ̇ ( ), and Ki i i

rϖ ϖ̇ = + ̇ ( ),
the basic Lagrangian equations (2.4)–(2.9) simplify to
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In addition to the previously mentioned circular restricted
problem, the disregard of interactions between different k k,1 2( )
resonances, i.e. the present consideration of only one specific
resonance also subsists if different resonance angles k k1 2

φ are
widely separated or if resonance takes place mainly with a single
dominant resonance angle, as usually occurs with asteroids
(Murray and Dermott, 1999, p. 374, 390). The present approx-
imation k consti = may be also appropriate for first order reso-
nances j j k k 12 1 1 2( − = + = ), when in Eqs. (2.4) and (2.5) only one
of the two resonant terms needs to be neglected, while the reso-
nant equations for e ,i

r
i

rϖ̇ ̇( ) ( ) are identical among Eqs. (2.6)–(2.9)
and (3.3)–(3.6).

We assume throughout that the resonance condition (e.g.
Murray and Dermott, 1999, Eq. (6.159))
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