Accepted Manuscript

RTFM, RTPL and photocatalytic activity of CeO₂/ZrO₂ nanocomposites

S. Usharani, V. Rajendran

PII: S0577-9073(17)30744-X DOI: 10.1016/j.cjph.2017.11.005

Reference: CJPH 380

To appear in: Chinese Journal of Physics

Received date: 17 June 2017
Revised date: 9 November 2017
Accepted date: 9 November 2017

Please cite this article as: S. Usharani , V. Rajendran , RTFM, RTPL and photocatalytic activity of CeO_2/ZrO_2 nanocomposites, *Chinese Journal of Physics* (2017), doi: 10.1016/j.cjph.2017.11.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights

- Oxygen vacancies of both CeO₂ and ZrO₂ nanostructures are main cause for RTFM.
- RTPL studies revealed the strong emission in UV and visible region due to excitons and F centers.
- By varying the pH the crystallite size can be controlled.
- High degradation achieve under UV light rather than visible light.

Download English Version:

https://daneshyari.com/en/article/8145273

Download Persian Version:

https://daneshyari.com/article/8145273

<u>Daneshyari.com</u>