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A B S T R A C T

Critically ill patients in intensive care units are vulnerable to the bacterial infections, especially if those patients
are elderly. The effective utilization of the appropriate drug can reduce the mortality rates in these patients.
Overlap bands often appear in applications of infrared (IR) spectroscopy, for instance in the identification of the
unknown material or drugs. This paper considers the problem of noisy and overlapped IR spectroscopic data
resolution improvement. A resolution improvement approach with ridgelet transform regularization for IR
spectroscopic data and total variation regularization for the apparatus response function. Moreover, the split
Bregman method is exploited to solve the resulting minimization problem. It is computationally simple and
suitable for implementation on small computers with less memory requirements. Simulation experimental re-
sults demonstrates the excellent performance of the proposed approach at noise suppression and spectral detail
preserving. The proposed method can remove the random noise and improve the spectroscopic data resolution,
thus leading the high-resolution IR spectroscopic data a more efficient tool for component analysis of the un-
known antibiotics or drug in critically ill elderly patients.

1. Introduction

Medical studies indicate that the pathological changes in the pa-
tients can often influence the body surface temperature. Critically ill
patients in intensive care units (ICU) are at high risk of bacterial in-
fections, especially if the patients are elderly. Infrared (IR) spectral
analysis appears in various applications such as rapid identification of
chemical drugs [1], analytical techniques biomedicine [2,3], and anit-
biotics component analysis (ACA) [4,5], etc. Unfortunately, the ex-
istence of bands overlap and random Gaussian noise (Fig. 1) in spec-
troscopic data limits the precision of the feature extraction and
spectrum identification [6–8], such as IR spectral feature exaction
[9–11], target detection [12–17], and multispectral remote sensing
images [18–23]. The experimental apparatus function must be a con-
volution of many factors, such as slit function, grating response, and
circuit response, etc. There are many reasons for the IR spectroscopic
noise, mainly including the noise caused by tiny changes of IR light
source intensity, the noise caused by stray light, vibration noise caused
by external interference, the noise caused by interferometer mirror

movement, and circuit noise, etc.
It is critical to reduce the noise in the infrared spectroscopic data

and improve its resolution (Fig. 2) before the subsequent spectrum and
interpretation processes. It aims to reconstruct a high quality spectrum
x(v) from the degraded spectrum u(v) [24–26]. Mathematically, the
process of IR spectroscopic data degradation can be generally modeled
by

= ⊗ +u x h ηv v v v( ) ( ) ( ) ( ) (1)

where ⊗ is convolution product ⊗ = ∑ −x h h xv v v i( ) ( ) ( )i i , the
symbol u(v) denotes the acquired noisy spectroscopic data, matrix H
represents the apparatus response function (ARF), h(v) is its vector
form. And x(v) denotes the unknown IR spectroscopic data to be esti-
mated; η(v) is the additive random noise.

It is well-known that the spectroscopic data reconstruction is a ty-
pical ill-posed inverse problem [27,28]. In general, the solution of Eq.
(1) is not unique, since small perturbations in the acquired noisy
spectroscopic data, due to noise, can cause large variations in the so-
lution. A standard approach for solving an inverse problem is to express
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the desirable solution (prior knowledge) as the minimizer of a reg-
ularization cost functional. Usually, regularization terms can perfectly
model the prior knowledge in the following framework,

= ⊗ − +

+

x h x h u x

h

L v v v v v α Reg v

α Reg v

( ( ), ( )) Min ( ) ( ) ( ) ( ( ))

( ( ))

x hv v( ), ( ) 2
2

1
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where the first term ⊗ −x h uv v v( ) ( ) ( ) 2
2 is the data fidelity term,

which stands for the fidelity between the acquired noisy spectroscopic
data and original clean one. In the first term ⊗ −x h uv v v( ) ( ) ( ) 2

2, the
subscript 2 and superscript 2 denote the L2 norm and square operation.
Both Reg(x(v)) and Reg(h(v)) are the regularization terms, denote a prior
model of the original IR spectroscopic data x(v) and ARF h(v), respec-
tively. The symbols α1 and α2 are the regularization parameters, which
control the tradeoff between the data fidelity and regularization terms.

Based on Eq. (2), both Reg(x(v)) and Reg(h(v)) have been specified
in different manners, and many IR spectral resolution improvement
algorithms have been proposed [29–34]. According to the priori
knowledge, those methods can be summary as two groups: spatial
points-based regularization (SPBR) method and frequency coefficient-
based regularization (FCBR) method. For the SPBR methods, the priori
knowledge is considered in spatial domain, such as Monte-Carlo ap-
proach [35], total variation-based (TV) methods [29,36], and spectral
semi-blind deconvolution (SSBD) method [32,37–40]. Liu et al. pro-
posed a novelty spectroscopic data resolution enhancement algorithm
with the Huber-Markov regularization [41] and achieved impressive
results. Then, some other approaches are developed [42], such as
maximum entropy deconvolution [28,43], modified minimum entropy
deconvolution [25,44], dictionaries learning [26,45,46] and detail-
preserving regularization [24,47]. Zhu et al. [32] proposed a semi-blind
spectral resolution improvement method, in which the ARF is para-
metrically formulated as a Gaussian shape function. All those methods
have achieved the impressive results. In recent years, spectral denoising
and reconstruction based on TV regularization [48–51] has been at-
tracting more attention [52–58]. It has been proved that the TV algo-
rithm is a very effective denoising approach, since its effectiveness in
preserving spectral features.

For the FCBR methods, the priori knowledge is considered in fre-
quency domain. To suppress the staircasing artifacts created by TV-
based models, detail-preserving methods such as sparse representations
are introduced in spectral reconstruction approaches. A wide variety of
transform functions have been proposed, e.g., Fourier [59], wavelet
[60], and contourlet [61–63], under the assumption that IR spectro-
scopic data are usually sparse in an appropriate transform domain. Toth
and Mason [64] et al. proposed a new low cost, short range, positioning
system based on adaptive finite impulse response (FIR) filtering and
time domain spectral estimation. For example, Kauppinen et al. [65,66]

proposed a Fourier self-deconvolution (FSD) algorithm, and proposed a
hybrid wavelet-FSD [31] noise reduction approach. In these methods,
the assumption is usually made that the ARF is known. In fact, the ARF
is difficult to be accurately measured [67]. The apparatus response
function is changed as the instrument aging. Especially, it is also af-
fected by the temperature and pressure of experimental environment
for anitbiotics component analysis.

Recently, the ridgelet transforms approaches [5] for signal re-
presentation can significantly improve signal resolution, since the rid-
gelet transforms can explicitly exploits the sparse approximations of IR
spectroscopic data and can effectively preserves spectral details. In-
spired by the consideration, an attempt is made to employ the ridgelet
transform regularization to descript the smoothness of IR spectroscopic
data. In this article, we develop a new approach for IR spectroscopic
data resolution improvement. The approach does not need a known
ARF in advance. This approach can effectively make use of the char-
acteristics of ridgelet transforms and produces the desired results. The
major novelty of the proposed method is that it can estimate the ARF
and latent IR spectroscopic data simultaneously. The main ideas and
contributions of the proposed method are summarized as follows:

(1) Ridgelet transforms regularization is studied to handle the IR
spectroscopic data resolution improvement issue. The proposed
method can effectively remove random spectral noise and preserve
structural details via ridgelet regularization.

(2) The split Bregman iteration optimization algorithm is utilized to
optimize the proposed IR spectroscopic data resolution improve-
ment model, in which the optimization of the reconstruction model
is split into two sub-problems, which can be easy to calculate.

The remainder of this paper is organized as follows. Section 2 for-
mulates the infrared spectroscopic data characteristics and introduces
the proposed method. Then the split Bregman method is applied to
solve the objective optimization problem in Section 3. In Section 4, the
performance of the proposed methods is verified by reconstructing si-
mulated degraded IR spectroscopic data and actual experimental IR
spectra. Section 5 draws the final conclusion.

2. Resolution improvement model with discrete ridgelet
transform regularization model

2.1. Discrete ridgelet transform regularization

Firstly, the ridgelet transform is employed to analyze the different
between the degraded spectroscopic data and high-resolution one.
Fig. 3(c) and (d) demonstrate the histogram statistic of the ridgelet
coefficients of IR spectroscopic data in Fig. 3(a) and (b). R represents
the ridgelet transform using the filters of the ridgelet system. For sim-
plicity, Rx(v) is used to denote the ridgelet coefficient. It finds that the
distribution of ridgelet coefficient in Fig. 3(d) is sparser than that in
Fig. 3(c). Most coefficients in Fig. 3(d) are close to the value 0. This is
because large ridgelet coefficients occur wherever there are singula-
rities such as band shoulder (spectral structure regions, see Fig. 3(d))
and detail information. The ridgelet-based approach essentially keeps
large ridgelet coefficients, and thus it preserves spectral structure and
detailed information. This motivates us to apply the discrete ridgelet
transform regularization to IR spectroscopic data reconstruction.
Namely, it can be constructed as

=x RxReg v α v( ( )) ( ) TV (3)

which penalizes the L1-norm of the ridgelet transform coefficients of the
IR spectroscopic data x(v)

A simple schematic diagram for the ridgelet coefficient adjustment
is shown in Fig. 3(c)–(d). For the flat region, the low-frequency com-
ponents should be increased. For the noise region, the mid-frequency
components should be decreased. For the shoulder region, the high-
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Fig. 1. Infrared spectroscopic data analysis. IR spectroscopic data often suffers
from the issues of band overlap and random noise for anitbiotics component
analysis.
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