
Contents lists available at ScienceDirect

Infrared Physics & Technology

journal homepage: www.elsevier.com/locate/infrared

Regular article

Measurement of the thermal transport properties of liquids using the front-
face flash method

I.Y. Forero-Sandoval, N.W. Pech-May⁎, J.J. Alvarado-Gil
Applied Physics Department, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km 6, A.P. 73 Cordemex, Mérida Yucatán 97310, Mexico

A R T I C L E I N F O

Keywords:
Thermal diffusivity
Thermal effusivity
Thermal conductivity
Front-face flash method

A B S T R A C T

The flash method in the front-face configuration is used to retrieve simultaneously the thermal diffusivity and
thermal effusivity of liquids. The thermal conductivity is determined from these measured properties. The
method consists in heating with a flash lamp, the front face of an opaque cell containing the liquid sample, and
monitoring the cooling process of the same face using an infrared camera. It is shown that a simple one di-
mensional approach, based on the Fourier’s heat diffusion equation for a three layer system, can be used to
determine the thermal properties of the liquid. Measurements performed on several non-metallic liquids cov-
ering a wide range of thermal properties validate the method. Good agreement is found between the retrieved
values of the thermal properties and previously reported values in literature. Moreover, measurements under the
front-face configuration are less time consuming than using the classical (rear-face) flash method. Due to its non-
contact nature, this method may find practical application for the thermal characterization of complex fluids
even when applying external electric or magnetic fields.

1. Introduction

Heat transfer in liquids has attracted the attention of the scientific
community in the last decades due to its important role in industry.
Particularly, in the design and operation of heat exchangers, for power
generation, air-conditioning, cooling devices in microelectronics,
among many others [1,2]. The three most relevant parameters for these
applications are: thermal conductivity K, thermal diffusivity α and
thermal effusivity ∊ (or the heat capacity c) which are linked [3] by the
relationship = = ∊K ρcα α , where ρ is the density of the material.
Consequently, only two thermal transport properties have to be mea-
sured in order to perform a complete characterization of a given ma-
terial.

For steady-state heat conduction, thermal conductivity
(Wm−1 K−1) is the property of interest. It measures the material’s
ability to transport thermal energy across a temperature gradient [3,4].
On the other hand, α and ∊ are thermal properties associated with
transient heat conduction. Thermal diffusivity (m2 s−1) measures the
propagation speed of thermal energy in a material [5] and thermal
effusivity (W s1/2 m −2 K−1) is a surface property that measures the
ability of the material to exchange heat with its surroundings [4].

There are several methods to measure the thermal properties of li-
quids [2,5–12]. However, methods like hot wire or ω3 are invasive to

the liquid and they may be more sensitive to convective heat transfer
rather than for heat conduction [11,13]. Nevertheless, the photopyro-
electric method (which is also contact based) has shown to be very
accurate for determination of thermal properties [8,14,15]. On the
other hand, non-contact methods present an advantage for studying the
thermal properties of fluids under the action of magnetic or electric
fields. This is a challenging and interesting research topic in complex
fluids. Accordingly, there have also been several investigations focused
in the rear-face (classical) flash method [16] for measuring the thermal
properties of liquids. However, some limitations have been found, for
example, when using a laser flash apparatus, the presence of air bubbles
in a required closed cell induces hardly accountable errors in the
measurements [17]. Additionally, when using a measurement cell,
made of two thin metallic cylindrical walls enclosing a liquid, it was
found that the thermal diffusivity and thermal effusivity of liquids
cannot be retrieved simultaneously [11]. However, when using this
methodology α and ρc could be estimated.

In this work, the front-face flash method [18] is successfully used for
the first time to retrieve simultaneously α and ∊ of liquids. The mea-
surement cell consists of two metallic slabs enclosing a liquid layer.
One-dimensional heat conduction is considered through this three-layer
system. The effect of the liquid thermophysical properties on the front
surface temperature, after applying a uniform heating pulse, is
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explored. Sensitivity analysis of the illuminated surface temperature
evolution to the changes of thermal diffusivity and thermal effusivity is
done. This provides information about the optimum layers’ properties,
which allows to obtain both thermal properties from a single mea-
surement. Several common non-metallic liquids and a thermal com-
pound based on silicone (silicone grease) covering a wide range of
thermal effusivities are studied.

2. Theoretical model

Fig. 1 shows the geometry of a three-layer system made of two
metallic slabs of thickness L1 each and a liquid layer of thickness L2.
One metallic surface is illuminated uniformly by a flash lamp pulse and
the corresponding Laplace transform of the temperature rise at that
surface =z( 0) is calculated using the thermal quadrupole method [19]:
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where T z( )1 and ϕ z( ) are the Laplace transforms of the solid slab tem-
perature and heat flux at positions =z L{0, }, respectively.

= +L L L2 1 2 is the total length of the three-layer system, i.e., =z L is
the rear-face of the system. The heat transfer by convection from the
solid surfaces, in contact with the surrounding atmosphere (air), is
taken into account by the quadrupole matrices involving the heat
transfer coefficient h. Note that heat transfer by convection at the solid-
liquid interfaces have been neglected since the temperature rise at both
interfaces is small. The quadrupole matrix with coefficients A B C, ,
and D is obtained from the product of the transfer matrices corre-
sponding to the three layers in the system [19,20],
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From Eq. (2), it can be inferred that:
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where the quadrupole coefficients of the i-th layer are given by [19]:
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where =x L α s/ ,i i is the Laplace variable, ∊i and αi are the thermal
effusivity and thermal diffusivity of the i-th layer, respectively. The
subscript =i {1, 2} stands for the solid and fluid layer, respectively.
Finally, the Laplace transform of the temperature at the front surface

=z( 0) can be expressed as
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which was obtained from Eq. (1) considering adiabatic boundary con-
ditions [19,20]: =ϕ I χ(0) 0 and =ϕ L( ) 0. The factor χ is the energy
fraction absorbed by the front surface. I0 represents the Laplace trans-
form of the light pulse. A Dirac delta intensity pulse =I t Q δ t( ) ( )0 0 was
considered. Its Laplace transform is =I Q0 0, where Q0 is the energy per
unit area (J m−2) delivered by the pulse and δ t( ) is the Dirac delta
function.

No analytical solution has been found for the inverse Laplace
transform ofT (0)1 . Consequently, the temperature evolution of the front
surface has been obtained by applying a numerical inverse Laplace
transform algorithm to Eq. (5). In this case, the well-known Euler al-
gorithm [21] has been used, which provides accurate results for smooth
functions. This condition is fulfilled by T (0)1 given in Eq. (5).

The quadrupole coefficients given in Eqs. (4) can be written in terms
of the following five parameters (see Eqs. (S1)–(S4) in the supplemen-
tary information): ∊ = = = ∊ ∊Q χ x L α x L α b/ , / , / , /0 1 1 1 1 2 2 2 21 2 1 (the
ratio between the thermal effusivity of the liquid to that of the solid)
and ∊h/ 1. Consequently, the Laplace transform of the front-face tem-
perature T (0)1 and the corresponding surface temperature evolution
T (0)1 depend on those five parameters, as shown in Fig. S1 of the sup-
plementary information. We assume that x1 is known and it can be fixed
during the evaluation of T (0)1 . Accordingly, a fit of T (0)1 as a function of
time, involving the other four parameters, may allow to retrieve α2 and
∊2 simultaneously, as long as the thickness of the fluid layer L2 and the
thermal effusivity of the solid layer ∊1 are also known.

3. Simulations

Simulations of the surface temperature evolution T (0)1 of a three
layer system, after applying a short heating pulse, are shown in Fig. 2.
The modeled system consists of two stainless steel AISI-316
( =α 3.61 mm2 s−1 and ∊ = 71881 Ws1/2 m−2 K−1) slabs and water
( =α 1.432 mm2 s−1 and ∊ = 15882 Ws1/2 m−2 K−1). The effect of the
metallic slabs thicknesses on the surface temperature T (0)1 is explored
in Fig. 2a. An ideal Dirac pulse of intensity 1 kJm−2 and a typical heat
convection coefficient [22] ( =h 10 Wm−2 K−1) is considered. More-
over, the dimensionless time t τ/ 2 is introduced, in such a way that si-
mulations are valid for any α2 and L2 values. The characteristic time

=τ L πα/( )2 2
2

2 , gives a measure of the time that it takes for the heat to
propagate through a slab (liquid layer ‘alone’) after exciting with a
Dirac like pulse [16]. The thickness of the liquid layer has been fixed to

Fig. 1. Diagram of a three-layer system consisting of a solid slab, a fluid layer
and another solid slab. The surface =z 0 is uniformly illuminated by a brief
flash lamp pulse.

Fig. 2. Surface temperature evolution T (0)1 of a three-layer system consisting of
two AISI-316 slabs and a water layer in the middle: (a) the effect of the solid
thickness L1 is explored and (b) the effect of the liquid layer thickness L2 is
shown.
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