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A B S T R A C T

This study establishes the general fusion method for infrared and visual images via latent low-rank re-
presentation (LatLRR) and local non-sampled shearlet transform (LNSST) to effectively combine the salient in-
formation of both images and solve problems on low-contrasting heterogeneous image fusion. First, LNSST is
used as a multi-scale analysis tool to decompose the source images into low-pass and high-pass sub-images.
Second, the LatLRR, which is an effective method for exploring multiple subspace structural data, is used to
extract the salient information of image sources. Thus, the LatLRR can be adopted to guide the adaptive
weighted fusion of low-pass sub-images. Simultaneously, the average gradient, which can reflect image edge
details, is regarded as the fusion rule for high-pass sub-images. A series of images from diverse scenes are used
for the fusion experiments, and the results are evaluated subjectively and objectively. The subjective and ob-
jective evaluations show that our algorithm exhibited superior visual performance, and the values of the ob-
jective evaluation parameters increase by about 5–10% compared with other typical fusion methods.

1. Introduction

The development of infrared (IR) and visible image fusion tech-
nology is largely aimed at developing modern military detection tech-
nology. A visible image (VI) is a reflection image with several high-
frequency components, and VI images can reflect scene details under
certain illumination conditions. However, when illumination is not
good, the resultant contrast of the VI image is relatively low.
Meanwhile, an IR image is a radiation image. The gray level of IR
images is determined by the temperature difference between the target
and background, but resultant images cannot reflect real scenes [1].
Image fusion technology for IR and VI images can effectively synthesize
and explore the combined characteristic information of two com-
plementary images with the same resolution, enhance the under-
standing of a scene, and highlight image targets; thus, image fusion
technology can find objects quickly and accurately despite confusing
situations [2].

Several fusion approaches have been recently proposed, especially
for pixel-level-based VI and IR image fusion [3]. A number of multi-
scale analysis tools, such as contourlet transform (CT) [4], non-sub-
sampled contourlet transform (NSCT) [5], and local non-subsampled
shearlet transform (LNSST) [6], have been successfully used in the field
of image fusion. LNSST is regarded the fastest MGA tool with the most

disaggregation effect. Furthermore, LNSST can exhibit good local
characteristics in space and frequency domains, avoid blocking effects,
weaken the Gibbs-ringing phenomenon by using local small-sized
shearlet filters, and improve the calculation efficiency of time domain
convolutions. Thus, many researchers favor LNSST over other techni-
ques. Lei et al. [7] proposed an adaptive fusion method based on the
LNSST and non-negative matrix factorization to construct an algorithm
that could guide the fusion of low-frequency coefficients, but the final
fused images were dim and lost considerable textural details. Zhang
et al. [8] presented a fusion algorithm based on saliency analysis and
LNSST. This method utilized saliency detection to integrate IR target
information into the VI image, but the fusion effect of background in-
formation required improvements. Wu et al. [9] combined LNSST and
deep Boltzmann machine programming to solve fusion problems, but
deep learning technology is not yet mature for fusion applications.
Wang et al. [10] proposed a fusion algorithm for RDU-PCNN and ICA
bases in the LNSST domain. Although the PCNN has a bionic me-
chanism, the final fused images introduce artifacts and have hazy image
edges. Kong et al. [11] forwarded a technique for gray-scale VI and IR
image fusion based on the LNSST. This method makes use of regional
averaged energy and local directional contrast, but the fused image
loses some important IR saliency information.

Latent low-rank representation (LatLRR) [12], an upgraded version
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of the low-rank representation (LRR), is an effective method for ex-
ploring the multiple subspaces of data structures. LatLRR can robustly
extract salient features from images because the method utilizes an
unsupervised feature extraction algorithm. Moreover, LatLRR is robust
to noise. When an image matrix is decomposed by LatLRR, the image
can be represented as a superposition of principal features, salient
features, and sparse noise. Salient features show the spatial distribution
of salient information of images, and the weighted-mean is usually
treated as the fusion rule for exploring the low contrast and unnatural
reconstruction of heterogeneous fused images. The LatLRR algorithm
can precisely identify salient objects and regions in images to form a
saliency map. The saliency map contains the weight information of the
spatial distribution of a grayscale image and thus integrates a weighting
function. The fusion rule can be changed from the weighted-mean to
the weighted-adaptive approach to effectively merge the salient in-
formation into the fused image and improve the fusion effect.

Based on the above review, this study proposes a general fusion
method for IR and visual images via LatLRR and LNSST. To the best of
our knowledge, this is the first time that the LatLRR has been used in
the field of heterologous image fusion, in which the heterologous source
images have the same resolution [13]. In this study, the LNSST is first
used as a multi-scale analysis tool to decompose image sources into a
low-pass sub-image and a series of high-pass sub-images. Second, the
saliency information of the image is extracted by LatLRR to guide the
adaptive weighted fusion of low-pass sub-image and high-pass sub-
images. Finally, each sub-image is modeled and the corresponding fu-
sion coefficients are produced. An algorithm is adopted to effectively
express image characteristics and obtain a good fusion effect by using
IR and visible light images in the fusion experiments.

The remainder of this paper is organized as follows: Section 2 in-
troduces the theory relevant to LNSST and LatLRR. Section 3 elaborates
the algorithm based on the new fusion rule. Section 4 presents five
experimental results and intuitively compares the proposed method
with other methods. Section 6 provides a summary of the findings.

2. Relevant theory

2.1. LNSST [14,15]

When the dimension is n=2, the shearlet system function with
discrete parameters is as follows:
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where φ∈ L2(R2), A, and B are 2× 2 reversible matrices; |det
B|= 1; j is the scale parameter; l is the direction parameter; and k is the
spatial position.

For j≥ 0, −2j≤ l≤ 2j− 1, k∈ Z2, and d=0,1, the Fourier trans-
form of the shearlet can be expressed on the basis of the tight support
frame.
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where V(2−2jξ) is the scale function; Wj,l
(d) is the window function lo-

calized on the trapezoidal pair; Ad is the heterosexual expansion matrix;
and Bd is the shear matrix. The shearlet transform of the f∈ L2(R2)
function can be calculated by Eq. (3).
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As shown in Eq. (3), the shearlet transform is divided into two steps.
The first step is a multi-scale decomposition [i.e., ̂ −f ξ V ξ( ) (2 )j2 ] and the
second step is the direction of the localization, i.e.,
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j l
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,
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Multi-scale decomposition: The image is subjected to non-sub-

sampled pyramid decomposition using a non-subsampled 2D filter bank
of dual channels to generate a low-pass sub-image and multiple high-
pass sub-images with perfect reconstruction.

Directional localization: Directional localization is achieved by
small-scale shearlet filters and high-pass sub-images convolution cal-
culations. The local window is L× L, where L= n·(2j−1+ 1) with j as
the scale parameter and n as any positive integer. The local small-size
shearlet filter can avoid the blocking effect, weaken the Gibbs-ringing
phenomenon, and improve the calculation efficiency of time domain
convolution. Thus, j is usually 2 or 3 and the local window is usually
15× 15.

The above shearlet transformation is called the LNSST, a technique
that removes the sampling operation in the decomposition stage. LNSST
involves translation invariance because the local small-size shearlet
filter can avoid spectrum aliasing to improve image decomposition and
reconstruction. The shearlet filter formation process for L=15 is
shown in Fig. 1.

The image f is decomposed by the m-layer LNSST to obtain ∑m2dm

high-pass directional sub-images and a low-pass sub-image. Each sub-
image is the same size as the original image, and dm is the number of m-
layers of directional localization. A two-layer LNSST decomposition of
Linda is shown in Fig. 2. The number of high-pass sub-images in the
first layer is 4 (the number of stages is 2), the number of high-pass sub-
images in the second layer is 4 (the number of stages is 2), and the size
of the shearlet filter is 15× 15.

2.2. LatLRR

The image sources of the fusion usually contain a certain amount of
noise, but LatLRR can automatically extract salient features from noisy
images. LatLRR is robust to noise, and the saliency map obtained is
more accurate than other saliency detection-based methods [16–18].

The core idea behind LatLRR is that an image matrix can be re-
presented as a superposition of principal features, salient features, and
sparse noise given the low rank and sparse optimization criteria. For an
image matrix X∈ RM×N, the idea may be interpreted as

= + +X XL SX E. (4)

where L represents the low-rank matrix, L∈ RN×N; S represents the
sparse matrix, S∈ RM×M; E represents the sparse noise, E∈ RM×N; XL

(a) Meyer wavelet window    (b) Pseudo-polarized (c) Frequency domain (d) Time domain 
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Fig. 1. Shearlet filter formation procedure when L=15.
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