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h i g h l i g h t s

� It is widely accept that the traditional depth prediction method of logarithmic peak second derivative (LPSD) based on one-dimensional heat transfer
model is independent of defect size or defect aspect ratio (diameter/depth). In this paper, analytical model and experimental results were in good
agreement and both revealed the same thing that LPSD method was affected by the defect size or aspect ratio.

� We constructed the relation between the specific characteristic time (SCT) of LPSD method and defect aspect ratio when considering the defect size. This
relation was verified by GFRP and stainless steel samples and it is independent of defect depth and material.

� We proposed an improved LPSD method for depth prediction, and the estimation of defect size had small influence on the accuracy for depth calculation.
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a b s t r a c t

Logarithmic peak second derivative (LPSD) method is the most popular method for depth prediction in
pulsed thermography. It is widely accepted that this method is independent of defect size. The theoretical
model for LPSD method is based on the one-dimensional solution of heat conduction without considering
the effect of defect size. When a decay term considering defect aspect ratio is introduced into the solution
to correct the three-dimensional thermal diffusion effect, we found that LPSD method is affected by
defect size by analytical model. Furthermore, we constructed the relation between the characteristic time
of LPSD method and defect aspect ratio, which was verified with the experimental results of stainless
steel and glass fiber reinforced plate (GFRP) samples. We also proposed an improved LPSD method for
depth prediction when the effect of defect size was considered, and the rectification results of stainless
steel and GFRP samples were presented and discussed.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Pulsed thermography is one of the most promising nondestruc-
tive evaluation (NDE) techniques for the reason that it is non-
contact, wide span of application, large area for one shot, single
side-access and curvature tolerant, etc. [1]. This technique is pro-
ven to be a good method both in the qualitative and quantitative
evaluation. Many qualitative applications have been reported, such
as adhesion failure, delamination defects, impact damage, liquid
ingress recognition, corrosion and so on [2–5].

Several depth prediction methods were reported in the litera-
ture. To begin with, depth prediction process featured as finding

a specific characteristic time (SCT) in the temperature decay and
correlated SCT with the depth. This kind of method is most com-
monly used. For example, peak contrast time (PCT) method [6–
7], peak slope time (PST) method [8–10], half-rise time method
[11], half-rise contrast time method [12], early-time method [13–
14], absolute peak slope time (APST) method [15], deviation time
method [16], logarithmic first derivative half-rise time method
[17] and logarithmic peak second derivative time method (LPSD)
[18]. Secondly, X. Maldague developed a pulsed phase thermogra-
phy (PPT) method [19] and used a blind frequency method to
predict depth [20–21]. Besides, the related lock-in thermography
also uses phase angle measurements to predict underlying defects
[22]. There are many other depth prediction methods, including
least-squares fitting method, neural network and tomography.
Sun developed a least-squares fitting method which utilizes a
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theoretical heat transfer model to fit the test data and predict
depth accordingly [23]. It is also reported that evaluating the defect
depth uses neural network [24–25]. Thermal tomography method
can also be used as a depth prediction method which can visualize
the depth from cross-sectional slice image if a special dimension
has been known in the field of view [26].

All methods mentioned above using SCT to predict depth are
based on the solutions of one-dimensional heat conduction model
either for semi-infinite body or a solid plate, which does not con-
sider the effect of three-dimensional heat conduction. Currently,
it is generally accepted that PCT method is affected by defect size,
and LPSD method is not [6–10]. In order to investigate how defect
size affects SCT of PCT method, D.P. Almond developed a method
that introducing a decay term considering defect aspect ratio
(defect diameter/defect depth) in the solution for the semi-
infinite body [27].

In this study, LPSD method will be investigated if it is affected
by defect size when the decay term considering defect aspect ratio
is introduced in the solution of heat conduction. The samples of
GFRP and stainless steel (SS) materials are manufactured with
many flat bottom holes of different defect aspect ratios and used
for an experimental demonstration.

2. Theory

In reflective pulsed thermography, the temperature of the front
surface of the sample rises instantaneously under the thermal exci-
tation with a short pulse of light, and then the temperature
decreases and tends to heat balance. An infrared camera is
employed to capture the surface temperature variation process
on the same side. Surface temperature T above a thermal disconti-
nuity with time t is normally expressed with two equations in
pulsed thermographic applications. One is the solution of the Four-
ier equation for the adiabatic heating of a solid plate by an instan-
taneous pulse [7]:
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where q (W/m2) is the input energy per unit area, d is defect
depth, a (m2/s) is thermal diffusivity, q (kg/m3) is density and C
(J/kg�K) is specific heat. The other is the solution of the Fourier
equation for the adiabatic heating of a thermally thick specimen
by an instantaneous pulse:
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where e (W � ffiffiffi
s

p �m�2 � K�1) is thermal effusivity, R ¼ e1�e2
e1þe2

is the

thermal reflection coefficient which could be assumed to be 1 for
solid-air interface [26].

The second derivative curve of the analytical temperature with
Eq. (1) in logarithmic scale has one maximal peak, which is the SCT
of LPSD method [6]:

tr ¼ d2

pa
ð3Þ

For the defects with the same depth and different size, the max-
imal peak has the same SCT as shown in Eq. (3). In Eq. (1) and Eq.
(2), there is no term concerned about defect size, and the SCT
shown in Eq. (3) is relatively early which leads to the thought that
it is not affected by three-dimensional heat conduction, and it is
also verified by some applications. Therefore, it is widely accepted
that LPSD method is independent of defect size.

In order to evaluate the effect of a circular defect with a diam-
eter D at a depth d on temperature decay, a decay term

1� e�
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is introduced in Eq. (2), considering the heat diffusion

from the defect center of circular to the edge at a distance D/2
away. So Eq. (2) can be expressed as [27]:
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where p is defect aspect ratio and equals to D/d. Once the decay
term considering the defect size is concerned, the surface temper-
ature decay is certainly affected accordingly. The temperature
decay in logarithmic scale simulated with Eq. (4) is shown in
Fig. 1, in which R is set to 1, d is 2 mm, a is 4.595 � 10�6 m2/s
(stainless steel), and p is chosen as integer numbers from 1 to 10.
Fig. 1 shows that the temperature curve with a bigger p at the same
depth drops slower because it has a bigger defect area and can trap
more heat which has a longer distance for the lateral heat diffusion
to the surrounding cooler and sound area. According to Eq. (4),
when p is very big, the corresponding temperature curve is more
close to the temperature curve without considering the defect size;
and when p is very small, for example 1, its temperature curve is
more close to the reference temperature curve.

In order to investigate if LPSD method is affected by the defect
size, the second derivative of temperature decay in logarithmic
scale is:
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where the first and second derivative of temperature T over
time t can be obtained from Eq. (4), however, too many terms
are involved and the SCT need to be obtained [27]. In this study,
the second derivative curves are obtained by directly applying
the second derivative on the data shown in Fig. 1, and the results
are plotted in Fig. 2. Fig. 2 clearly shows that the peak values and
times are affected by defect size or defect aspect ratio. For both
the maximal and minimal peaks, LPSD curve with a smaller p has
a smaller peak time and amplitude. However, the maximal peak
almost does not change when p is bigger than 7, and the minimal
peak still changes a lot when p equals to 10, which means that the
maximal peak is less affected by defect size.

In order to investigate how defect size affects the SCT of LPSD
method, the same analytical methods were applied for different
defect depths and materials including stainless steel (whose ther-
mal diffusivity is 4.595 � 10�6 m2/s) and GFRP (whose thermal dif-
fusivity is 3.4 � 10�7 m2/s), and all the maximal peak times tLPSD

Fig. 1. Temperature decays of simulated defects using Eq. (4) in stainless steel (SS)
which have the same depth (2 mm) and different p (defect aspect ratio) range from
1 to 10.
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