Accepted Manuscript

Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method

Mustafa B. Muradov, Ofeliya O. Balayeva, Abdulsaid A. Azizov, Abel M. Maharramov, Lala R. Qahramanli, Goncha M. Eyvazova, Zohrab A. Aghamaliyev

PII:	S1350-4495(17)30203-7
DOI:	https://doi.org/10.1016/j.infrared.2018.01.014
Reference:	INFPHY 2472
To appear in:	Infrared Physics & Technology
Received Date:	16 April 2017
Revised Date:	7 December 2017
Accepted Date:	11 January 2018

Please cite this article as: M.B. Muradov, O.O. Balayeva, A.A. Azizov, A.M. Maharramov, L.R. Qahramanli, G.M. Eyvazova, Z.A. Aghamaliyev, Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method, *Infrared Physics & Technology* (2018), doi: https://doi.org/10.1016/j.infrared.2018.01.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method

Mustafa B. Muradov^b, Ofeliya O. Balayeva^{a*}, Abdulsaid A. Azizov^a, Abel M. Maharramov^a,

Lala R. Qahramanli^b, Goncha M. Eyvazova^b, Zohrab A. Aghamaliyev^b

^aDepartment of Chemistry, Baku State University, Z. Khalilov str., 23, AZ-1148 Baku, Azerbaijan

^bDepartment of Physics, Baku State University, Z. Khalilov str., 23, AZ-1148 Baku, Azerbaijan

ABSTRACT

Convenient and environmentally friendly synthesis of Co_9S_8/PVA , Co_xS_y/EG and $Co_xS_y/3$ -MPA nanocomposites were carried out in the presence of ultrasonic irradiation by the liquid phase synthesis of the sonochemical method. For the synthesis, cobalt acetate tetrahydrate $[Co(CH_3COO)_2 \cdot 4H_2O]$ and sodium sulfide $(Na_2S \cdot 9H_2O)$ were used as a cobalt and sulfur precursor, respectively. Polyvinyl alcohol (PVA), ethylene glycol (EG) and 3-mercaptopropionic acid (3-MPA) were used as a capping agent and surfactant. The structural, optical properties and morphology of nanocomposites were characterized using X-ray diffractometer (XRD), Ultraviolet/Visible Spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optical band gap of Co_9S_8/PVA is 1.81 eV and for Co_xS_y/EG is 2.42 eV where the direct band gap of bulk cobalt sulfide is (0,78-0,9 eV). The wide band gap indicates that synthesised nanocomposites can be used in the fabrication of optical and photonic devices. The growth mechanisms of the Co_9S_8 , CoS_2 and Co_3S_4 nanoparticles were discussed by the reactions. The effects of sonication time and annealing temperature on the properties of the nanoparticles have been studied in detail.

Keywords: nanocomposites (NCs); sonochemical synthesis; optical properties; capping agent

* Corresponding author (O.O.Balayeva).

Tel.: +994 515 765 875

E-mail address: ofeliya1989@inbox.ru

1. INTRODUCTION

Download English Version:

https://daneshyari.com/en/article/8146028

Download Persian Version:

https://daneshyari.com/article/8146028

Daneshyari.com