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h i g h l i g h t s

� Fused image is derived by use a low-rank decomposition on the recovered HR images.
� Fusion by compressed sensing, dictionary learning, low-rank matrix decomposition.
� Use linear weights fusion rule to get high resolution fusion image at each scale.
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a b s t r a c t

Most of available image fusion approaches cannot achieve higher spatial resolution than the multisource
images. In this paper we propose a novel simultaneous images super-resolution and fusion approach via
the recently developed compressed sensing and multiscale dictionaries learning technology. Under the
sparse prior of image patches and the framework of compressed sensing, multisource images fusion is
reduced to a task of signal recovery from the compressive measurements. Then a set of multiscale
dictionaries are learned from some groups of example high-resolution (HR) image patches via a nonlinear
optimization algorithm. Moreover, a linear weights fusion rule is advanced to obtain the fused high-res-
olution image at each scale. Finally the high-resolution image is derived by performing a low-rank
decomposition on the recovered high-resolution images at multiple scales. Some experiments are taken
to investigate the performance of our proposed method, and the results prove its superiority to the
counterparts.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fusion of multisource images came from different modalities is
very useful for obtaining a better understanding of the environ-
mental conditions. For example, the fusion of multi-focus images,
the infrared (IR) images and visible images, the medical CT images
and MRI images, and the multi-spectrum images and panchromatic
images etc. Nowadays, multi-resolution based fusion approaches
have been one of the popular image fusion techniques and proven
to present state-of-the-art result [1–4], including pyramid-based
methods, wavelet transform (WT)-based methods and so on. By
decomposing images into different subbands representing the
image details at some scale, we can fuse or recombine the multi-
resolution coefficients of images to acquire the fusion image [5].
Among all the multi-resolution based fusion approaches, the dic-
tionary has a remarkable influence on the fusion results, which

can provide an accurate description of details in multisource
images. Among them, wavelet based methods is proved to outper-
form other approaches for its local property in both time and fre-
quency domain. In recent years, some researchers have indicated
that the wavelet transform is limited in capturing the geometric
structure of images, such as edges, contours and textures. There-
fore, some geometric multi-resolution analysis tools have been
used for image fusion, such as Contourlets [6,7].

Although many works have been done on multi-resolution
image fusion, most of available image fusion approaches cannot
achieve spatial resolution higher than that of the multisource
images, because the spatial resolution of the fused image depends
on that of source images. In the last decade, a new developed com-
pressed sensing (or compressive sampling, CS) [8,9] framework,
has been used for signal acquisition and recovery. It indicated that
a sparse or compressible signal can be accurately recovered from
very few linear measurements by random projection. Assume that
a signal x 2 RN is compressible under a dictionary W 2 RN�N : x ¼
Wh. The coefficient vector is sparse, i.e., khk0 = K, where k�k0
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represent the number of elements that are non-zero. The key idea
of CS is to recover the original x from its random measurements
y ¼ Ux 2 RMðN � MÞ. In other words, compressed sensing indi-
cated a new approach of achieving High Resolution recovery via
low-resolution measurements. Under the condition that the matrix
U �W satisfies Restricted Isometry Property (RIP), x will be accu-
rately recovered from only M P K observations [5], via solving such
the following optimization problem,

min
h

hk k0

s:t: y ¼ Ux ¼ UWh

(
ð1Þ

Nowadays compressed sensing can be classified into three catego-
ries: compressed sensing based imaging [16–22] (such as optical
imaging [14,15], medical imaging [19,20] and hyperspectral imag-
ing [21,22]), compressed sensing based image processing [23–26]
(such as the texture classification [23], super-resolution image
construction [24]) and ‘‘compressed sensing’’ form applications
[27,28,35,36]. Numerous works are of the ‘‘compressed sensing’’
form applications, that is, if the task can be reduced to the
optimization problem shown in (1), these works are also called as
compressed sensing based applications.

In the image fusion, most of the available compressed sensing
based fusion schemes are of ‘‘compressed sensing’’ form
[8–15,27,28,35,36]. However, compressed sensing can recover the
high-resolution signal x from its compressive measurements,
which can be used for simultaneous super-resolution and fusion
of multisource images. In our work, we advance a new simulta-
neous images super-resolution and fusion approach via the
recently developed compressed sensing and multiscale dictionary
learning technology. Under the sparse prior of image patches and
the framework of compressed sensing, the multisource images
fusion is reduced to a task of signal recovery from the compressive
measurements. Then a set of multiscale dictionaries are learned
from some groups of example high-resolution image patches, to
recover multiple high-resolution images by solving non-convex
and nonlinear optimization problems. Moreover, a linear weights
fusion rule is designed to obtain the high resolution fusion image
at each scale. Finally the high-resolution fused image is derived
by performing a low-rank decomposition on the recovered high-
resolution images at each scale. Some experiments are taken to
evaluate the effectiveness of our proposed method, and the simu-
lational results indicated that it not only efficiently fuse the infor-
mation from multisource images, but also achieve resolution
higher than that of the source images.

In the following section, the proposed simultaneous fusion and
super-resolution scheme of multisource images is expounded in
Section 2. In Section 3, several tests are performed to make a
comparison with its counterparts, followed by a conclusion in
Section 4.

2. Simultaneous fusion and super-resolution scheme of
multisource images

In this following, the super-resolution multisource images
fusion problem formulation under the compressed sensing frame-
work, along with the multiscale dictionary learning and low-rank
decomposition technology is used in our approach.

2.1. Super-resolution multisource images fusion problem formulation

Assume that the multisource images Ylow
i ; i ¼ 1;2; . . . ; S

n o
to be

fused are low-resolution images, that is, the ith source images Ylow
i

is a low-resolution version of Xhigh
i :

Ylow
i ¼MXhigh

i þ Ni ði ¼ 1; . . . ; SÞ ð2Þ

where S is the band number of source images; M is the down-reso-
lution operator and Ni is the additive Gaussian noises existed in the
ith source image. In the super-resolution images fusion method, our
goal is to recover Xhigh from the multisource images

Ylow
i ; i ¼ 1;2; . . . ; S

n o
. The superscript high and low indicates the

high-resolution image and low-resolution image respectively.
The patches based fusion is adopted in our method, that is, Xhigh

are processed in raster-scan order. Let xhigh
j 2 Rn denotes the jthffiffiffi

n
p
�

ffiffiffi
n
p

local patch vector extracted from a high-resolution fusion

image Xhigh at the spatial location j: xhigh
j ¼ RjX

high, where Rj

denotes a windowing operation that is used to extract patches.
Given a set of p � p(p e Z+) low-resolution patches taken from

Ylow
i : ylow

i;1 ; y
low
i;2 ; . . . ; ylow

i;Q

n o
2 Rm (m = p2), (i = 1,. . ., S; j = 1,. . ., Q),

we have the following set of equations,

ylow
i;1 ¼ Hxhigh

i;1 þ ni;1

ylow
i;2 ¼ Hxhigh

i;2 þ ni;2

� � �
ylow

i;Q ¼ Hxhigh
i;Q þ ni;Q

8>>>><
>>>>:

ð3Þ

A simple example of the matrix H 2 R4�16 is,

H ¼

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

2
6664

3
7775
ð4Þ

From formula (3) we can see that recovering xhigh
i;j ði ¼ 1; . . . ; S; j ¼ 1;

. . . ;QÞ from ylow
i;j is an ill-posed problem, which can be solved by cast-

ing a sparse prior on xhigh
i;j and solving a non-linear and non-convex

optimization problem. As soon as xhigh
i;j is calculated, we can recon-

struct the fusion image Xhigh from the high-resolution patches

xhigh
i ði ¼ 1; . . . ; SÞ that are derived from a set of q� qðq 2 ZþÞ high-

resolution patches xhigh
i;j i ¼ 1; . . . ; S; j ¼ 1; . . . ;Qð Þ 2 Rn (n = q2). This

is a simultaneous fusion and super-resolution problem of multi-
source images.

2.2. Super-resolution multisource images fusion via compressed
sensing

According to the recently developed compressed sensing theory

[5,6], it is capable of recovering xhigh
i;j i ¼ 1; . . . ; S; j ¼ 1; . . . ;Qð Þ from

ylow
i;j when xhigh

i;j is sparse or compressible. In other words, xhigh
i;j will

be coded under a dictionary Dhigh
i 2 Rn�K that is incoherent with

a measurement matrix H, i.e.,

xhigh
i;j ¼ Dhigh

i ai;j ð5Þ

Here coefficient vector ai,j 2 RK satisfies kai;jk0 ¼ S� n < K, and K is

the column number of dictionary Dhigh
i . When m � OðS log nÞ, xhigh

i;j

can be obtained. The coefficient ai,j can be solved from (5) using
the orthogonal matching pursuit algorithm [8],

min
ai;j

kai;jk0

s:t: ylow
i;j ¼ Hxhigh

i;j ¼ HDhigh
i ai;j

8<
: ð6Þ

and an estimation of xhigh
i;j can be obtained using (5).

In our method, a linear fusion rule is performed on the

fYlow
i ;Ylow

2 ; . . . ;Ylow
S g with each Ylow

i ¼ ylow
i;1 ; y

low
i;2 ; . . . ; ylow

i;Q

n o
. Consid-

ering the patch by patch processing pattern, we write the
low-resolution fusion patch as,
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