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h i g h l i g h t s

� We reconstruct heat sources from temperature fields using a derivative Gaussian filter.
� Synthetic temperature fields corrupted by noise enabled us to optimise the filter.
� The influence of both the dimension and the level of a localised heat source is discussed.
� Experimental fields on aluminium plates heated by electric patches were processed.
� The relevancy of the filter to reliably reconstruct heat source fields is demonstrated.
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a b s t r a c t

The aim of this paper is to present a post-processing technique based on a derivative Gaussian filter to
reconstruct heat source fields from temperature fields measured by infrared thermography. Heat sources
can be deduced from temperature variations thanks to the heat diffusion equation. Filtering and differ-
entiating are key-issues which are closely related here because the temperature fields which are pro-
cessed are unavoidably noisy. We focus here only on the diffusion term because it is the most difficult
term to estimate in the procedure, the reason being that it involves spatial second derivatives (a Laplacian
for isotropic materials). This quantity can be reasonably estimated using a convolution of the tempera-
ture variation fields with second derivatives of a Gaussian function. The study is first based on synthetic
temperature variation fields corrupted by added noise. The filter is optimised in order to reconstruct at
best the heat source fields. The influence of both the dimension and the level of a localised heat source
is discussed. Obtained results are also compared with another type of processing based on an averaging
filter. The second part of this study presents an application to experimental temperature fields measured
with an infrared camera on a thin plate in aluminium alloy. Heat sources are generated with an electric
heating patch glued on the specimen surface. Heat source fields reconstructed from measured tempera-
ture fields are compared with the imposed heat sources. Obtained results illustrate the relevancy of the
derivative Gaussian filter to reliably extract heat sources from noisy temperature fields for the experi-
mental thermomechanics of materials.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The study of thermomechanical phenomena by means of infra-
red (IR) thermography is of great interest for the mechanical engi-
neering community. With the continuous improvement of IR
cameras (both in terms of measurement resolution and dimension
of detection matrix), it is now possible to measure accurately tem-
perature fields representative of physical phenomena such as ther-
moelastic coupling, plasticity, and phase transitions. However, the

temperature variation is not the most relevant physical parameter.
Indeed, a temperature field in a specimen is the consequence of
several phenomena: (i) heat sources produced by the material in
the specimen; (ii) heat conduction inside the specimen; and (iii)
heat exchanges with the outside of the specimen. For studying
the mechanical behaviour of materials, it is more relevant to ana-
lyse the heat sources produced by the material during its deforma-
tion. In practice for the measurement of heat source fields, two
approaches are available in the literature:

� The first approach belongs to the framework of the so-called
’inverse problems’. It consists in minimising the quadratic error
between measured temperature fields and theoretical
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temperature fields which are provided by a model. This minimi-
sation problem is however difficult to solve. First, experimental
thermal fields are always noisy. Second, IR cameras provide
data on the surface of the specimen. Even for problems which
are assumed to be bidimensional, measurements are often
obtained in a limited zone of the specimen. In this case, the
boundary conditions of the model are the experimental temper-
atures at the boundaries of the thermal images. Since the prob-
lem is ill-posed, regularisation methods are classically used.
Several applications based experimental thermal fields pro-
vided by an IR camera have been performed, see Refs. [1–6].
For example, the approach developed in Ref. [6] is used for
material parameter identification and provides a physical inter-
pretation of various thermomechanical contributions in a semi-
crystalline polymer subjected to tensile loading.
� The second approach consists in directly calculating heat

sources from experimental temperature variation fields using
the heat diffusion equation. Important results have been
obtained about the behaviour of materials with the work of A.
Chrysochoos since the late 1980s (see Refs. [7–9] and references
included). An advantage of this approach is that it is not neces-
sary to know the boundary conditions of the problem in this
case. However as for the first approach, temperatures are only
known at the surface of the specimen. To overcome this diffi-
culty, simple geometries are considered: plane specimens with
small thickness or cylindrical specimens with small diametre
for instance. It must then be assumed that the temperature is
nearly homogeneous through the thickness. Heat exchanges
with ambient air by convection are taken into account with a
Fourier condition [10]. The main difficulty of this approach is
the fact that the temperature fields are noisy. This leads to some
problems in the calculation of the derivative terms of the heat
diffusion equation. Some strategies have been tested in the lit-
erature: mean-square approximation, low-pass recursive filter,
‘sliding’ smoothing window (local averaging or mean-square
approximation), Fourier series, etc. This approach has been used
to study various thermomechanical phenomena such as strain
localisation in steels [10,11], Portevin Le Châtelier bands in alu-
minium alloys [12], propagation of necking in a polyamide [13],
thermoelastic effects accompanying the viscoelastic deforma-
tion process in a PMMA and a PC [14], phase transformation
in shape memory alloys [15–19], stored energy during the plas-
tic deformation process of metals (see Refs. [13,20–22] and
included references) as well as fatigue of steels [23–26] and alu-
minium alloys [27,28]. Converting temperature fields in heat
source fields is also discussed in Ref. [29], where the non-
destructive evaluation of induced frictional heating in a crack
in titanium is addressed. Refs. [30,31] also present experimental
studies based on heat source reconstruction in
vibrothermography.

The current study belongs to the second family. It relies on the
use of a derivative Gaussian filter to estimate heat sources in a
bidimensional specimen. We focus here only on the diffusion term
which involves a second-order spatial derivative (Laplacian opera-
tor for isotropic materials). A convolution of the temperature var-
iation fields by second derivatives of a Gaussian function is
applied. The first part of the study is based on synthetic tempera-
ture fields obtained by finite differences. The influence of noise,
which is a key-issue here, is taken into account. The filtering
parameters are optimised in order to reconstruct at best the im-
posed heat source field. The influence of both the dimension and
the level of a localised heat source is discussed. Obtained results
are compared with another type of processing based on an averag-
ing filter in order to highlight the relevancy of the derivative
Gaussian filter compared to this more classic approach. The second

part of the study presents an application to several experimental
temperature fields obtained by infrared thermography. Heat
sources are created with an electric heating a patch glued on the
surface of aluminium specimens. The heat source fields recon-
structed from measured temperature fields are compared with
the imposed heat sources to assess the efficiency of the proposed
method.

The paper is organised as follows: Section 2 recalls the bidimen-
sional version of the heat diffusion equation used for heat source
calculation; Section 3 presents the derivative Gaussian filter to
be applied to the temperature fields; Section 4 presents the appli-
cations to theoretical temperature fields with added noise; finally,
Section 5 presents an application to experimental temperature
fields obtained by IR thermography.

2. Heat diffusion equation

Let us consider a rectangular plate in the (x,y) plane with small
thickness along the z direction (say a few millimetres for metallic
materials). The bidimensional version of the heat diffusion equa-
tion can be written as follows for an isotropic material [10]:

qC
@h
@t
þ h

s

� �
� kDh ¼ st ð1Þ

where st(x,y, t) is the heat source produced by the material and
h(x,y, t) the temperature variation from a reference state. The mate-
rial parameters are the thermal conductivity k, the density q and
the specific heat C. The parameter s is a time constant characteris-
ing the heat exchanges by convection with air in the z direction. In
this equation, symbol D is the Laplacian operator in the (x,y) plane,
thus Dh = @2h/@x2 + @2h/@y2.

It is generally useful to divide Eq. (1) by qC. In this case, the
advantage is that only one thermophysical material quantity is
needed, namely the thermal diffusivity D = k/qC of the material.
This leads to:

@h
@t
þ h

s
� DDh ¼ s ð2Þ

where s = st/qC. This approach is used for instance in Refs.
[10,18,24,27], which also consider heat sources divided by qC. Note
that the thermal diffusivity D is an input data for the processing
proposed in the present study.

The heat source st is expressed in W/m3 and s is in K/s. s can be
interpreted as the temperature rate that would be obtained in case
of adiabatic evolution of the observed system. In the following, s
will be named ’heat source’ for the sake of simplicity.

The heat source fields s (cause) can be deduced from the tem-
perature variation fields h (consequence), thanks to the left-hand
part of Eq. (2). With noisy input data, the most difficult term to cal-
culate is the Laplacian term, so we focus here on the diffusion term
only: �DDh. Its calculation does not involve temporal derivatives.
The processing proposed in this study is designed to be applied
to an image at a given time. Without altering the relevancy of
the processing, we have fix some conditions of the thermal image
to be processed: the steady-state temperature field resulting from
a heat source field constant in time, i.e. s(x,y, t) = s(x,y) and
h(x,y, t) = h(x,y). In this case, Eq. (2) reduces to:

h
s
� DDh ¼ s ð3Þ

Filtering is a key-point of the technique to estimate heat source
fields since the goal is to calculate spatial derivatives from noisy
temperature variation fields. As recalled above, the classic route
consists first in smoothing the experimental data and then in dif-
ferentiating the obtained result. The idea here is to merge both
stages by convolving temperature variation fields with a suitable
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