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Abstract 

The experimental studies of elasto-plastic deformation of tubular steel samples under proportional and non-proportional 
(monotonic and cyclic) loadings, including partial and intermediate loadings, have been conducted with the aim of improving 
the accuracy of the description of the complex passive loading processes. The plastic strain accumulation was observed in 
the course of tests carried out under passive loading. However, this effect turned out not to be described by the plastic flow 

theory. This result required the development of an alternative material model. The comparisons of experimental results with 
the predictions of the structural (rheological) elasto-plastic model and the multisurface theory of plasticity with one active 
surface were made. Modifications of the constitutive equations were proposed in order to improve the accuracy of the material 
response prediction. 
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Introduction 

The theory of plastic flow, which has currently 

gained wide application, assumes that the unloading 

of a material has no effect on plastic strain. How- 
ever, the results of a number of studies [1–19] have 
revealed that plastic strain accumulates under passive 
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loading (unloading, loading within the loaded surface 
and tangential to it). Plastic strain under passive load- 
ing is described by the endochronic theory of plastic- 
ity [4,5] and the generalized Prandtl model (the Maz- 
ing model) [6] . The formulations of the constitutive 
equations of the above theories are primarily aimed at 
refining the description of active strain, while the pa- 
rameters of the material are determined without taking 

into account the specifics of the processes occurring 

under passive loading. 
Experimental studies into the properties of the plas- 

tic compliance field [20] laid the foundations for de- 
veloping a multi-surface theory of plasticity with one 
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active surface [14–19] . The concept of plastic com- 
pliances is directly or indirectly used by multi-surface 
theories of plasticity [21,22] . At the same time, not 
nearly enough experimental research has been accu- 
mulated on the properties of plastic compliances of 
materials. This mainly concerns strain with passive 
loading paths. The accumulation of residual strain un- 
der such loads must be taken into account not only in 

stress–strain analysis [14–19] , but also in calculations 
of damage accumulation [13,23,24] , studies of super- 
plasticity processes [25] or in assessing the operating 

capacity and precision of machine units [26] . 
This study was carried in order to further develop 

and substantiate the concept of plastic compliances 
and to devise a procedure for performing calculations 
related to complex variable loading involving interme- 
diate full or partial unloadings. 

Constitutive equations for describing passive 
loading 

Vector representation of stress and strain 

Under two-parameter loading with invariable and 

coincident directions of the principal axes of stresses 
and strains tensors, five-dimensional deviatoric spaces 
are reduced to two-dimensional ones. Various equiv- 
alent approaches are possible [7] for introducing the 
coordinates of a two-dimensional space that satisfy the 
condition that the vector length be equal to the tensor 
intensity. One possible way of setting the �1 and �2 

coordinates for a point characterizing the stress state 
is as follows: 

�1 = σi cos ψ = σ1 − 1 
2 ( σ2 + σ3 ) = 

3 
2 S 1 , 

�2 = σi sin ψ = 

√ 

3 
2 ( σ2 − σ3 ) = 

√ 

3 
2 ( S 1 + 2 S 2 ) , 

(1) 

where σ i is the von Mises stress; ψ is the angle be- 
tween the stress vector � and the �1 axis; σ 1 , σ 2 , σ 3 

are the principal stresses; S 1 , S 2 , S 3 are the principal 
deviatoric stresses. 

Similar expressions are also introduced for plastic 
strains. They link the E 

p 
1 , E 

p 
2 coordinates of the corre- 

sponding point in the two-dimensional space of plastic 
strain to the principal values of deviatoric plastic strain 

ε 
p 
1 and ε 

p 
2 by the relations: 

E 
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1 , 
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p 
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(
ε 
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p 
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)
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(2) 

where ε p i is the von Mises plastic strain intensity, ϕ is 
the angle between the plastic strain vector E 

p and the 
E 

p 
1 axis. 

In the stress space, sets of stress states sharing a 
common attribute (the development of plastic strain of 
a given magnitude, fracture, etc.) correspond to certain 

boundaries (hypersurfaces which are, in the particular 
case, hyperspheres in the vector space under consider- 
ation, or curves under biaxial loading). One of these 
boundaries is shown in Fig. 1 b by a circle of radius 
C α with the center in point α. 

Structural (rheological) model 

Let us consider a structural model of plastic de- 
formation of the material [13,15,28] ( Fig. 1 a ). It is 
assumed within this model that the yield boundary re- 
tains its shape and size C α ( Fig. 1 b ) under loading. 
Its position is governed by the loading history. This 
boundary starts to move when the stress vector inter- 
sects it from within. 

The vector of plastic strain increment �E 

p is pro- 
portional to the projection of the vector of stress incre- 
ment �� by the outer normal to the boundary of the 
loading surface and is directed along this normal. The 
lengths of the increments of the considered vectors, 
| �E 

p | = �ε 
p 
i and | ��| = �σi , are related by 

| �E 

p | = H α| ��| cos 
(
��∧ �E 

p 
)
, (3) 

where H α is the plastic compliance modulus, constant 
for all points of the boundary. 

When the stress state changes within the inner α- 
circle, all the elements with dry friction are fixed 

( Fig. 1 b ). As the boundary is reached, element 1 be- 
gins to move relative to element 2 . The stresses α1 

and α2 emerging in the elastic elements are the coor- 
dinates of the center of the circles with the radius C α

in the plane �1 , �2 ( Fig. 1 b ). Similarly, the stresses 
in the elements β1 and β2 , γ 1 and γ 2 are the coordi- 
nates of the centers of the circles with the radii C β и 
C γ . The parameters α1 and α2 , β1 and β2 , γ 1 and γ 2 

correspond to the vectors α, β and γ . 
Plastic strain does not develop under loading along 

the 1 → 2 path ( Fig. 1 b ), since the distance from the 
current point to the center of the circle δα is less than 

its radius C α: 

δα ˙ = 

√ 

( �1 − α1 ) 
2 + ( �2 − α2 ) 

2 ≤ C α. (4) 

With further motion along the straight line 1 –2 , after 
point 2 ( δα > C α) is passed, the element α starts to 

move along the radius to the α-circle, that is, at an 

angle ω: 

ω = arctg 

�1 − α1 

�2 − α2 
, (5) 
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