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Abstract 

The paper considers the method suggested by Papkovich for rectangular plates and its application for a cantilever plate 
bending under a uniform load. The required function of the bendings is chosen in the form of a sum of the corresponding 
beam function and a biharmonic function, which is a series in terms of unorthogonal eigenfunctions of the problem. The 
eigenfunctions satisfy the homogenous boundary conditions on the longitudinal edges (the clamped and the opposite ones). It 
is suggested to find series coefficients from the condition of the minimum residuals effect on the corresponding displacements of 
the transverse edges. It leads to an infinite system of linear algebraic equations for the required coefficients in the complex form. 
The coefficients of homogenous solutions were found for the cases in which the approximating series contained sequentially 2, 
3,...,7 terms. The eigenvalues, the bendings of the edge opposite to the clamped edge, and the bending moments in the clamped 
section were calculated. Convergence of the reduction method and stability of the computational process were analyzed. 
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Introduction 

A rectangular cantilever plate is a computational 
scheme for many elements of engineering structures. 
In particular, cutting tools for a number of manufac- 
turing processes are fabricated as rectangular plates 
rigidly clamped along one edge. Stress–strain analy- 
sis of cantilever plates is also used in calculating the 
strength and stiffness of the individual elements in the 
constructions of water turbines, ships, planes and mis- 
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siles. The bending problem of a rectangular cantilever 
plate has no exact closed solution, and the results ob- 
tained by the known approximate solutions have to be 
analyzed for accuracy. The spread in numerical results 
from different authors reaches 20%. 

The goal of this study is to obtain reliable numeri- 
cal results for the stress–strain state of these plates by 

the method of homogenous solutions. 
The first study on calculating cantilever plates was 

carried out by Holl [1] , who used the finite differ- 
ence method (FDM, also called the grid method) for 
a wide plate with an aspect ratio of 4:1. A concen- 
trated force applied in the center of the free edge op- 
posite to the clamped one served as the load. This 
method was also used by many authors for different 
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types of loads, plate aspect ratios and grid spacings. 
The finite element method (FEM) was first applied by 

Zienkiewicz and Cheung [2] ; they divided a square 
plate into nine square elements and considered the 
case of a uniform load. Other approximate techniques, 
such as the Rayleigh–Ritz, the Bubnov–Galerkin and 

the Kantorovich–Vlasov methods, and others, were 
also used to solve this problem. Study [3] applied the 
method of infinite superposition of correcting func- 
tions in terms of hyperbolic trigonometric series in 

order to find the deflection function; in the course of 
the application of the method, all residual errors in 

the boundary conditions tended to zero, providing an 

exact solution of the problem in the limit. 

Homogenous solutions and relations of generalized 

orthogonality of elastic rectangular plates 

A solution of the biharmonic equation 

∇ 

2 ∇ 

2 w = 0 (1) 

was sought for by Papkovich [4] in the form 

w(x, y) = 

∑ 

k 

c k e 
−βk x F k (y) , (2) 

where ∇ 

2 is the two-dimensional Laplace operator, w 

is the plate deflection, c k are the series coefficients, βk 

are the eigenvalues, and F k ( y ) are the eigenfunctions 
of the problem. For a plane elasticity problem, w is 
the Airy function, and in the case of thin plate bending 

it is the deflection. After sum (2) is substituted into 

Eq. (1) , an ordinary differential equation is obtained 

for the F k ( y ) functions: 

F 

IV 
k + 2β2 

k F k 
′′ + β4 

k F k = 0, (3) 

whose general solution has the form 

F k (y) = A k sin βk y + B k cos βk y + C k ycos βk y 

+ D k y sin βk y. (4) 

Let us consider a rectangular plate with the relative 
dimensions 

−γ / 2 ≤ x ≤ γ / 2, 0 ≤ y ≤ 1 

where γ = a / b is the aspect ratio of the plate. 
If we impose the requirement that deflection func- 

tion (2) of the plate must satisfy the homogenous 
boundary conditions at the edges y = 0 and y = 1, then 

a transcendental equation whose solution involves the 
eigenvalues βk is obtained for each type of these con- 
ditions. For example, when the plate is clamped at 

both edges, the transcendental equation takes the fol- 
lowing form: 

sin 2 βk ± 2 βk = 0 

(here the plus sign refers to the even functions in ex- 
pression (4) , and the minus sign to the odd ones). 

These equations have an infinite number of com- 
plex roots forming groups of quartets (some of the 
roots may be real). 

If the eigenvalues are found, then the functions 
e −βk x F k (y) are called homogenous solutions. 

For a non-orthogonal system of complex functions 
that are the eigenfunctions of the problem F k ( y ), the 
authors of Refs. [5,6] have established a relation ∫ 1 

0 

[
F 

′′ 
k (y) F 

′′ 
s (y) − β2 

k β
2 
s F k (y) F s (y) 

]
dy = 0 (5) 

(at k � = s), which is called the relation of generalized 

orthogonality. 
The coefficients c k of series (2) must be determined 

from the boundary conditions at the transverse edges 
x = ±γ / 2. Since usually there are two such condi- 
tions and one sequence of coefficients c k , generally, 
two boundary conditions cannot be strictly satisfied at 
once. It should be noted here that although the coef- 
ficients c k consist of real and imaginary components, 
the requirement that the results must be real links them 

together. However, in the particular case, if the bound- 
ary conditions are such that in order to find the coeffi- 
cients c k we need to perform, at the edges x = ±γ / 2, 
a joint expansion of two different given functions of 
y into series of the form 

f 1 (y) = 

∑ 

k 

a k L 1 [ F k (y )] , f 2 (y ) = 

∑ 

k 

a k L 2 [ F k (y)] , 

(6) 

( a k are some unknown complex constants, proportional 
to c k ) and the functions L 1 and L 2 are expressed by 

the formulae 

L 1 
[
F k (y) 

] = F k (y) , L 2 
[
F k (y) 

] = β2 
k F k (y) (7) 

or by the formulae 

L 1 
[
F k (y) 

] = βk F k (y) , L 2 
[
F k (y) 

] = β3 
k F k (y) , (8) 

then it is possible to simultaneously satisfy two con- 
ditions (see, e.g., Ref. [4] ); in this case, generalized 

orthogonal relation (5) is used, and the coefficients a k 

are found by applying the Fourier procedure. 
Eq. (5) was proved for the case when the edges 

y = 0 and y = 1 are clamped. Prokopov [7] established 

that Eq. (5) also holds for the free edges, and if one 
of the edges is clamped and the other is free. 
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