Accepted Manuscript

Gold and ytterbium interfacing effects on the properties of the CdSe/Yb/CdSe nanosandwiched structures

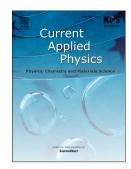
S.R. Alharbi, A.F. Qasrawi

PII: S1567-1739(18)30123-8

DOI: 10.1016/j.cap.2018.04.021

Reference: CAP 4740

To appear in: Current Applied Physics


Received Date: 23 September 2017

Revised Date: 26 February 2018

Accepted Date: 28 April 2018

Please cite this article as: S.R. Alharbi, A.F. Qasrawi, Gold and ytterbium interfacing effects on the properties of the CdSe/Yb/CdSe nanosandwiched structures, *Current Applied Physics* (2018), doi: 10.1016/j.cap.2018.04.021.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Gold and ytterbium interfacing effects on the properties of the CdSe/Yb/CdSe

nanosandwiched structures

S. R. Alharbi ¹, A. F. Qasrawi ^{2, a}

¹Physics Department, Faculty of Science- Al Faisaliah, King Abdulaziz University, Jeddah- Saudi Arabia

²Groups of Physics at AAUJ, Jenin and at Faculty of Engineering, Atilim University, 06836 Ankara, Turkey

E-mail: atef.gasrawi@atilim.edu.tr, atef.gasrawi@aauj.edu

Abstract

Owing to the performance of the CdSe as an optoelectronic material used for the production of

quantum dots, photosensors and wave traps we here, in this article, report the enhancements in

structural and electrical properties that arises from the nanosandwiching of a 40 nm thick Yb film

between two films of CdSe (CYbC-40). The CdSe films which were deposited onto glass, Yb and

Au substrates are characterized by X-ray diffraction, temperature dependent electrical conductivity

and impedance spectroscopy measurements in the frequency range of 10-1800 MHz. The analysis

of the XRD patterns have shown that the glass/CdSe/Yb/CdSe films exhibit larger grain size and

lower strain, defect density and lower stacking faults compared to the not sandwiched CdSe. In

addition, it was observed that the Yb shifts the donor states of the *n*-type CdSe from 0.44 to 0.29 eV

leading to a modification in the built in voltage of the material. On the other hand, the design of the

energy band diagram has shown the ability of the formation of the Au/ CYbC-40/Yb as Schottky

(SB) and the Au/CYbC-40/Au as back to back Schottky barriers (BBSB). While the SB device

show low band pass filter characteristics, the BBSB device performed as band stop filters. The

BBSB device exhibited negative capacitance effects with filtering features that reveal a return loss

of 42 dB at ~1440 MHz.

Keywords: CdSe; nanosandwiching; Coating; defects; Schottky

* Author to whom any correspondence should be addressed.

Tel: 00970599379412 Fax: 0097042510817

1

Download English Version:

https://daneshyari.com/en/article/8147670

Download Persian Version:

https://daneshyari.com/article/8147670

Daneshyari.com