Journal of Crystal Growth 492 (2018) 114-121

Contents lists available at ScienceDirect

Journal of Crystal Growth

journal homepage: www.elsevier.com/locate/crys

Hao Liu, Peiqiang Lan, Shangqing Lu, Sufang Wu*

College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

ARTICLE INFO

Article history: Received 27 October 2017 Received in revised form 3 April 2018 Accepted 16 April 2018 Available online 17 April 2018 Communicated by S. Veesler

Keywords:

- A1. Nucleation
- A1. Growth models
- A2. Reactive crystallization B1. Nanomaterials
- B1. Calcium compounds
- B1. Phosphogypsum

ABSTRACT

Phosphogypsum (PG) as a low-cost calcium resource was used to prepare nano-CaCO₃ in a three-phase system by reactions. Based on the population balance equation, nano-CaCO₃ crystal nucleation and growth model in the gas (CO₂)-liquid (NH₃·H₂O)-solid (CaSO₄) three-phase system was established. The crystallization kinetic model of nano-CaCO₃ in CO₂-NH₃·H₂O-CaSO₄ reactions system was experimental developed over an optimized temperature range of 20–40 °C and CO₂ flow rate range of 138–251 ml/min as $r_{CaCO_3} = k_n \frac{32\pi M^2 r_3}{3R^2 \rho^2 T^3} \frac{(C-C)^{0.8}}{[\ln(C/C)]^3} + \frac{\pi \rho}{3M} k_g^3 k_n (C - C^*)^2 t^3$, where nano-CaCO₃ nucleation rate constant was $k_n = 6.24 \times 10^{19} \exp\left(-\frac{15940}{RT}\right)$ and nano-CaCO₃ growth rate constant was $k_g = 0.79 \exp\left(-\frac{47650}{RT}\right)$ respectively. Research indicated that nucleation rates and growth was dependent on temperature more than that of nucleation process because the activation energy of CaCO₃ growth was bigger than that of CaCO₃ nucleation. Decreasing the reaction temperature and CO₂ flow rate was more beneficial for producing nano-size CaCO₃ because of the lower CaCO₃ growth rates. The deduced kinetic equation could briefly predict the average particle sizes of nano-CaCO₃.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

As a kind of important inorganic nano-materials, nano-CaCO₃ has been widely used in the fields of rubber, plastic, paper, paint, ink, cosmetics and medical industry [1] because of its small size effect, unique quantum size effect and macroscopic quantum tunneling effect [2]. Besides, the calcium-looping used nano-CaO based CO_2 adsorbent is a promising technology for high-temperature decarbonation [3,4] owing to its high capture capacity and fast sorption rate derived from large specific surface area [5,6]. It outperforms many other mature CO_2 capture technologies and can be applied to numerous industrial processes, such as flue gas decarbonation [7] and reactive sorption enhanced reforming for hydrogen production [8]. However, the high preparation cost is the normal and restricts its widely industrial applications [9,10].

Preparing nano-CaCO₃ from phosphogypsum (PG) might be a potential solution, which is not only reduces the nano-CaCO₃ material cost, but also reuses the PG wastes storage. PG is generated during the production of phosphoric acid from phosphate rocks by wet method [11,12]. It primarily consists of calcium sulfate dihydrate (>90 wt%), and has approximately 280 million tons

annual output in the worldwide. However, over 80% of the PG is dumped without any treatment [13].

The researches about preparation of $CaCO_3$ derived from PG have been reported in many different systems [14–19]. Among these methods, cogeneration of ammonium sulfate and $CaCO_3$ is the most mature technology. Because the solubility product constant of $CaCO_3$ is 3250 times smaller than that of $CaSO_4$, the conversion of $CaSO_4$ in this reaction can reach 99.97%, and ammonium sulfate could also be used as fertilizer.

Tian Xie et al. [18] disclosed a two-phase preparation method by using solid phosphogypsum (s) and ammonium carbonate solution (l). They added additives and ammonium carbonate into the phosphorus gypsum slurry, the reaction temperature was maintained at 30-60 °C and the reaction time was 0.5-2 h. The purity of the CaCO₃ product was 93% and the range of average particle size was $1-5 \mu$ m. Baojun Yang et al. [19] proposed a homogeneous preparation method in which the phosphogypsum was converted into soluble calcium ion solution by phase transfer catalyst including ammonium sulfate, ammonium salts of organic acids or sodium salt, then reacted with ammonium carbonate solution. The purity of the CaCO₃ product was 97% and the range of average particle size was about 1 μ m. Siqi He et al. [20] prepared CaCO₃ in the three-phases reaction system of ammonia (l), phosphorus gypsum slurry (s) and CO₂ (g) at the temperature of 55–85 °C (Eq. (1)). But

癯

CRYSTAL

^{*} Corresponding author.

E-mail address: wsf@zju.edu.cn (S. Wu).

	Nomenclature				
	В	number rate of nucleation, number/(m ³ ·min)	$k_{sp.CaSO_4}$	solubility product of CaSO4	
	С	supersaturation concentration, mol/m ³	M	molecular weight of CaCO ₃ , g/mol	
	<i>C</i> *	equilibrium saturation concentration, mol/m ³	п	reaction order of nucleation	
	[C]	concentration of material C in bulk solution, mol/m ³	Р	population density of CaCO ₃ crysta	
	g	reaction order of crystal growth	$P(L_i)$	population density of crystal with	
	G	linear crystal growth rate, m/min	r _{CaCO3}	crystallization rate of CaCO ₃ , mol/	
	L	crystal size, m	r _g	crystal growth rate, mol/(m ³ ·min)	
	Lo	size of newborn crystal, m	r_n	nucleation rate, mol/(m ³ ·min)	
	Li	mean size of crystal in range i $(L_i - \Delta L/2, L_i + \Delta L/2)$, m	R	gas constant, J/(mol·K)	
	k_{g}	growth rate constant, m ^{3g+1} /(mol ^g ·min)	t	time, min	
	k_n	nucleation rate constant, number/(mol ⁿ ·m ³⁻³ⁿ ·min)	Т	temperature, K	
	K_1	equilibrium constant of reaction '5'		-	
	K_2	equilibrium constant of reaction '7'	Greek sy	rmbols	
I	K ₃	equilibrium constant of reaction '8'	ρ	density of CaCO ₃ , g/m^3	
I	$k_{sp,CaCO_3}$	solubility product of CaCO ₃	γ	surface tension of CaCO ₃	
1					

the conversion was less than 60% and the particle size was around 10–20 µm. Kyungsun Song et al. [21] did the research in the same system at the room temperature, they got CaCO₃ with the diameters around 5–10 μ m. The three-phase reaction system had more advantages for nano-CaCO₃ production due to one step to get the products which could simplify the process. But the particle size of CaCO₃ product in these researches never reached nano grade. Based on our recent researches, the nano-CaCO₃ could be derived from PG via reactive crystallization in ammonia aqueous under continuous CO₂ injection [22]. However, the crystallization kinetics of the nano-size CaCO₃ produced from this system has not been reported. Some of the researches about the crystallization mechanism of CaCO₃ from different systems have been reported, such as calcium acetate-ammonium carbamate-CO₂ batch system [23], a reverse macro emulsion system based on N-stearoyl acid surfactant with head group of serine [24], the stack-like crystallization of calcium carbonate in the presence of hen egg white under direct drying and vacuum freeze drying [25].

$$\begin{aligned} \text{CaSO}_4 \cdot 2H_2O(s) + 2NH_4OH(aq) + \text{CO}_2(g) \\ \rightarrow (NH_4)2\text{SO}_4 + \text{CaCO}_3(s) + 2H_2O(l) \end{aligned} \tag{1}$$

The purpose of this paper was to disclose the nucleation and growth process of PG-derived nano-CaCO₃ by reactive crystallization in the gas (CO₂)-liquid (NH₃·H₂O)-solid (CaSO₄) three-phases system. The nano-CaCO₃ prepared in this system referred to calcite nanoparticles with the mean particle sizes of about 100 nm. By analyzing the crystallization mechanism of CaCO₃, a new kinetic model would be deduced based on population balance with the favor of Laplace transform and experimental results at a range of reaction temperatures and CO₂ flow rates.

2. Modeling

2.1. Three phases reaction process

The reactive crystallization of PG was a complex process and involves gas (CO₂), liquid (NH₃·H₂O) and solid (PG) three phases. The reactions occurring during the process could be described in the following four steps with equations, which were illustrated in Fig. 1.

a. The dissociation of ammonium in water solution

$$NH_3 + H_2O \Longrightarrow NH_4^+ + OH^-$$

rystal with size of L_i , number/m³ ol/(m³∙min) n³∙min) 03

b. CO₂ absorption and reaction

$$CO_2 + H_2O \rightarrow HCO_3^- + H^+ \tag{3}$$

$$HCO_3^- + NH_3 \rightleftharpoons CO_3^{2-} + NH_4^+ \tag{4}$$

$$CO_3^{2-} + NH_4^+ \rightleftharpoons H_2NCOO^- + H_2O \tag{5}$$

c. The dissolution of CaSO₄

$$CaSO_4(s) \rightleftharpoons Ca^{2+} + SO_4^{2-} \tag{6}$$

d. The conversion of CaCO₃

$$Ca^{2+} + CO_3^{2-} \to CaCO_3(s) \tag{7}$$

At the initial stage of the reactions, the adsorption of CO₂ was relatively small and there was a lot of ammonia in this solution, so the reaction rate of reaction (3) was much bigger than that of reaction(4) and (5). Also, only reaction (4) and (5) were related to the CO_3^{2-} ion concentration in this system. The chemical reaction equilibrium constant expressions for Eqs. (2), (4) and (5) were listed as follow.

$$K_1 = \frac{[NH_4^+][OH^-]}{[NH_3]}$$
(8)

$$K_2 = \frac{[CO_3^{2-}][NH_4^+]}{[HCO_3^-][NH_3]} \tag{9}$$

$$K_3 = \frac{[H_2 N CO_2^-]}{[CO_3^{2-}][NH_4^+]}$$
(10)

The solubility products of $CaSO_4$ and $CaCO_3$ in Eqs. (6) and (7) are as followings.

$$k_{sp,CaSO_4} = [SO_4^{2-}][Ca^{2+}]$$
(11)

Fig. 1. Reaction mechanism of speculation.

Download English Version:

https://daneshyari.com/en/article/8148532

Download Persian Version:

https://daneshyari.com/article/8148532

Daneshyari.com