#### Journal of Crystal Growth 483 (2018) 115-120

Contents lists available at ScienceDirect

# Journal of Crystal Growth

journal homepage: www.elsevier.com/locate/crys

# Cubic boron phosphide epitaxy on zirconium diboride

Balabalaji Padavala<sup>a</sup>, H. Al Atabi<sup>a</sup>, L. Tengdelius<sup>b</sup>, J. Lu<sup>b</sup>, H. Högberg<sup>b</sup>, J.H. Edgar<sup>a,\*</sup>

<sup>a</sup> Kansas State University, Department of Chemical Engineering, Durland Hall, Manhattan, KS 66506, USA <sup>b</sup> Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

## ARTICLE INFO

Article history: Received 2 August 2017 Received in revised form 10 November 2017 Accepted 11 November 2017 Available online 13 November 2017 Communicated by C. Caneau

Keywords: A1. Crystal morphology A1. Defects A1. Substrates A3. Chemical vapor deposition processes B2. Semiconducting III-V materials

## ABSTRACT

Cubic boron phosphide (BP) is one of the least studied III-V compound semiconductors, in part because it is difficult to prepare in high quality form. In this study, zirconium diboride ( $ZrB_2$ ) was studied as a potential substrate for BP epitaxial layers, because of its advantages of a low lattice constant mismatch and high thermal stability. Two types of substrates were considered:  $ZrB_2(0 \ 0 \ 1)$  epitaxial films on 4H-SiC (0 0 0 1) and bulk  $ZrB_2(0 \ 0 \ 1)$  single crystals. The optimal temperature for epitaxy on these substrates was 1100 °C; higher and lower temperatures resulted in polycrystalline films. The BP film/ $ZrB_2$  interface was abrupt as confirmed by cross-sectional transmission electron microscopy, attesting to the stability of  $ZrB_2$  under BP deposition conditions. The BP films were under compressive and tensile strain on  $ZrB_2$  and  $ZrB_2/4H$ -SiC substrates, respectively, as determined by Raman spectroscopy, due to differences in the substrate/film coefficients of thermal expansion. This study suggests that with further optimization,  $ZrB_2$  can be an excellent substrate for BP epitaxial films.

© 2017 Elsevier B.V. All rights reserved.

### 1. Introduction

There are two binary boron-phosphorus compound semiconductors, boron monophosphide (BP) also known as cubic boron phosphide [1–3], and boron subphosphide (denoted as B<sub>12</sub>P<sub>2</sub> or B<sub>6</sub>P) also known as icosahedral boron phosphide [1,4]. Both semiconductors are potentially suitable for solid state neutron detectors [5,6], due to the large thermal neutron capture cross-section of the boron-10 isotope (3855 barns) [7]. Here we focus on the epitaxial growth of BP, an indirect bandgap semiconductor (E<sub>g</sub> = 2.0 eV) [3,8]. Its distinguishing properties include an ability to exhibit both *n*- and *p*-type conductivity [3,9], a high thermal conductivity (up to 665 W·m<sup>-1</sup>·K<sup>-1</sup>) [10,11], and a high hardness (34 GPa) [12]. Besides neutron detectors, it is also under consideration as a photocatalyst for hydrogen evolution [13] and spacers for extreme ultraviolet reflective optics [14].

Single crystal thin films are necessary for many BP device applications, and they can be prepared by chemical vapor deposition (CVD). The best single crystal substrate for BP epitaxy is unclear. Silicon has been a common substrate, but it suffers a large lattice constant mismatch (+20%) and results in high silicon concentrations ( $10^{19}$  cm<sup>-3</sup>) in the BP film at deposition temperatures of 1000 °C or higher, presumably due to diffusion and autodoping [9]. Silicon carbide is a better substrate, due to its smaller lattice constant mismatch (-4.0%), and greater thermal stability than silicon. First used by Chu et al. [15] in 1971, there have been several recent studies of BP epitaxy on 6H-SiC, 4H-SiC and 3C-SiC [16–18]. As a substrate, silicon carbide does have the potential disadvantage of autodoping the BP with silicon and/or carbon. Aluminum nitride, in the form of epitaxial layers on sapphire, is also a suitable substrate for BP [19]. Its advantages include an even smaller lattice constant mismatch (-3.0%) than SiC, and a larger coefficient of thermal expansion than BP, which results in compressively stressed films, lowering the tendency for the BP films to crack, which they do under tensile stress when deposited on Si and SiC.

Here we consider zirconium diboride (ZrB<sub>2</sub>) as a substrate for BP epitaxy due to its high thermal stability and small lattice constant mismatch with BP (-1.3%). The coefficients of thermal expansion of ZrB<sub>2</sub> and BP are roughly  $6 \times 10^{-6}$  to  $7 \times 10^{-6}$  K<sup>-1</sup> from 300 K to 1000 K [20] and  $3.0 \times 10^{-6}$  to  $5.4 \times 10^{-6}$  K<sup>-1</sup> from 300 K to 1000 K [21], respectively. It also shares boron as an element common to both the film and the substrate. It is a refractory material with a hexagonal crystal structure (AlB<sub>2</sub> type structure) formed by layers of boron atoms in honeycombed, graphite-like sheets, stacked between hexagonal close packed layers of zirconium. With a high melting point (3230 °C) [22], ZrB<sub>2</sub> should be stable under all practical deposition temperatures and hence noncontaminating. It has a high electrical conductivity  $(7.0 \times 10^{-6} \,\Omega \cdot cm)$  [23] due to its metallic bonding and electron transfer from the metal to boron sheet. This is advantageous for vertical devices, as it minimizes the electrical resistance of the substrate. It is available as epitaxial







癥

<sup>\*</sup> Corresponding author. E-mail address: edgarjh@ksu.edu (J.H. Edgar).

layers on Si, SiC, and Al<sub>2</sub>O<sub>3</sub> [24–26] and bulk crystals [27–29]. All these properties make it a potentially suitable substrate for growing BP films. Here,  $ZrB_2(0001)$  buffer layers on 4H-SiC and bulk  $ZrB_2(0001)$  crystals were tested as substrates for BP epitaxy.

#### 2. Experimental Methods and conditions

The  $ZrB_2(0001)$  films on 4H-SiC(0001) employed in this study were prepared by high temperature direct current magnetron sputtering as developed by Tengdelius et al. [24–26]. Briefly, this consisted of sputtering from a  $ZrB_2$  target onto a 4H-SiC(0001) substrate heated to 900 °C. The bulk  $ZrB_2(0001)$  substrates were diced and polished from a crystal that was grown by a float zone technique by Otani et al. [27].

The BP CVD reactor and sample preparation procedure were previously described by Padavala et al. in a study of BP epitaxy on 3C-SiC [18] and AlN/sapphire [19] substrates. Most BP films were grown on  $\sim$ 400 nm ZrB<sub>2</sub>(0001) buffer layers deposited on a 407  $\mu m$  thick 4H-SiC(0001) wafer; a few were deposited on  $\sim$ 390  $\mu$ m thick bulk ZrB<sub>2</sub>(0001). Substrate areas were 0.5 cm<sup>2</sup>-1.0 cm<sup>2</sup>. The temperature of the substrates was calibrated against the thermocouple readout by melting a silicon substrate on the susceptor under actual reaction conditions. The deposition temperature mentioned throughout this paper, deduced from the thermocouple readout, is expected to closely approximate the surface temperature of the substrates. Substrates were heated to 1200 °C under H<sub>2</sub> flow for 15 min to clean the surface prior to BP deposition. After this in-situ H<sub>2</sub> etching, the temperature was reduced and stabilized at the deposition temperature (1000-1200 °C). After achieving a stable temperature, PH<sub>3</sub> was introduced into the carrier gas stream and flowed throughout the deposition process. The deposition time started when B<sub>2</sub>H<sub>6</sub> flow was introduced and ends when it was stopped. After the deposition, the temperature is slowly reduced to room temperature. PH<sub>3</sub> was flowed during the cooling period until a substrate temperature of 800 °C to prevent BP decomposition by maintaining a phosphorus vapor pressure. All BP films discussed in this paper were deposited for 30 min. The thicknesses were not measured, but were expected to be between 1 and 3 µm over the temperature range 1000–1200 °C, based on measured thicknesses in our previous studies [17-19]. The H<sub>2</sub> carrier gas flow rate was constant at 4000 sccm in all runs. The PH<sub>3</sub> and B<sub>2</sub>H<sub>6</sub> flow rates at 1000–1100 °C were at 40 sccm and 0.2 sccm, respectively. At 1200 °C, the PH<sub>3</sub> and B<sub>2</sub>H<sub>6</sub> flow rates were increased to 80 sccm and 0.4 sccm, respectively, based on the best results obtained in our previous studies [17,19]. In the present study, the PH<sub>3</sub> and B<sub>2</sub>H<sub>6</sub> flow rates (or ratios) at each temperature were not varied.

The properties of the BP/ZrB2 films were assessed in several ways. The morphology and grain size of films were imaged by optical microscopy and field emission scanning electron microscopy (FEI Nova NanoSEM 230). The orientation of the BP films, whether they were single or polycrystalline, and if other phases were present, were determined by X-ray diffraction (XRD, Rigaku Miniflex II) with a CuK $\alpha_1$  (1.54 Å) source. Strain in the films and the crystal quality were also evaluated via Raman spectroscopy using a 0.55 m spectrometer (iHR550, Horiba/Jobin Yvon) coupled to an upright microscope (Olympus BX41) and a 633 nm HeNe laser. Whether the films were exclusively BP or contained B<sub>12</sub>P<sub>2</sub> was determined by Raman spectroscopy and XRD. Transmission electron microscopy (TEM) cross-sectional specimens were prepared by gluing two pieces of the samples face-to-face, polishing from both sides of the specimen down to 60  $\mu$ m in thickness, and finally Ar<sup>+</sup> ion milling to electron transparency. TEM imaging was carried out by using a FEI Tecnai G2 TF20 UT high-resolution TEM instrument with a field emission gun operated at 200 kV and a point resolution of 1.9 Å.

#### 3. Results and discussion

#### 3.1. Growth and morphology of BP films

SEM micrographs of the BP films deposited on both types of  $ZrB_2$  substrates at 1000–1200 °C are shown in Fig. 1. The growth temperature had a strong effect on the morphology and crystalline orientation of BP. On both types of substrates, at 1000 °C, the films had polycrystalline features such as irregular shaped facets. These films resemble the polycrystalline BP films grown at 1000 °C on AlN [19], 4H-SiC [17] and 3C-SiC [18] substrates in our previous studies. Films deposited at 1100 °C had much better crystalline orientation with triangular BP(1 1 1) features. The average grain size increased from 0.5  $\mu$ m to 2.5  $\mu$ m as the temperature was increased from 1000 °C to 1100 °C. There was no evidence of  $B_{12}P_2$  formation on either type of substrate at this temperature.

At the highest deposition temperature (1200 °C), the films were a mixture of rough, randomly faceted crystallites, relatively smooth regions, and scattered icosahedrons, the latter suggesting the presence of  $B_{12}P_2$ . XRD and Raman spectroscopy analysis of these films confirmed  $B_{12}P_2$  was formed, as discussed in subsequent paragraphs. The rough regions and  $B_{12}P_2$  formation are contrary to the results for BP deposited on AlN [19] and 4H-SiC [17] substrates at 1200 °C under same deposition conditions; there the BP films were highly ordered and free of  $B_{12}P_2$ . The reason  $B_{12}P_2$  forms on ZrB<sub>2</sub> substrates but not on the other substrates at a deposition temperature of 1200 °C is unknown, but this behavior was reproduced.

A low-magnification cross-section TEM of the BP film grown on the 400 nm thick  $ZrB_2$  layer on 4H-SiC substrate at 1100 °C revealed the presence of defects in the BP layer (Fig. 2a). The highest density of defects was closest to the BP/ZrB<sub>2</sub> interface, and decreased toward the free surface. Faceting of the BP film was evident. The BP film on bulk ZrB<sub>2</sub> was similar (Fig. 2b).

Higher resolution TEM images of the BP interface with ZrB<sub>2</sub>/4H-SiC and bulk ZrB<sub>2</sub> substrates for films grown at 1100 °C are shown in Fig. 3. BP epitaxy was achieved on both substrates. There were many stacking faults and dislocations in the BP films near the interface. The interface was smoother for the BP film on ZrB<sub>2</sub>/4H-SiC substrate compared to the bulk ZrB<sub>2</sub> substrate; still there were plenty of twin boundaries on the {1 1 1} planes, stacking faults, and dislocations in the BP. These twin planes (shown in Fig. 3a) indicate the rotational twinning in BP films. Rotational twinning typically happens when there is a mismatch in crystal symmetry between the epilayer and underlying substrate. In the present case, BP has a zinc blende crystal structure and the underlying ZrB<sub>2</sub> and 4H-SiC substrates have hexagonal crystal structure. The preferred orientation of  $BP(1 \ 1 \ 1)$  on  $ZrB_2(0 \ 0 \ 0 \ 1)$  has a 3-fold symmetry while the hexagonal  $ZrB_2(0001)$  has a 6-fold symmetry. Due to this difference in crystal symmetry, the BP(1 1 1) film deposits with two different orientations, rotated by 180° with respect to each other. A deep pit was seen at the interface in Fig. 3a, indicating the ZrB<sub>2</sub> film was not uniformly deposited on 4H-SiC prior to the BP deposition. This may be a consequence of the microstructure of ZrB<sub>2</sub> films on SiC [24]. It is possible that grains boundaries are etched faster by the H<sub>2</sub> introduced prior to the deposition of the BP. In summary, there were BP(111) twins on ZrB<sub>2</sub> substrates due to the difference in symmetry between  $BP(1 \ 1 \ 1)$  and  $ZrB_2(0 \ 0 \ 0 \ 1)$ .

#### 3.2. Crystalline orientation of BP

The XRD patterns for the BP films grown on  $ZrB_2/4H$ -SiC substrates at three temperatures are shown in Fig. 4. The diffraction patterns for 1000 °C and 1100 °C were not significantly different; only BP was detected. At 1200 °C, both  $B_{12}P_2$  and BP peaks were Download English Version:

# https://daneshyari.com/en/article/8148916

Download Persian Version:

https://daneshyari.com/article/8148916

Daneshyari.com