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a b s t r a c t

Spatial–temporal stability analysis has been applied to a solidification model that includes both isotropic
and non-isotropic kinetics. In agreement with previous temporal stability analyses, it was shown that the
kinetics associated with the propagation of steps across a facet can stabilize solidification processes that
would normally be thermally unstable. In cases where the solidification is unstable, it was also shown
that pulling the solid with a tangential velocity can cause a transition from “absolute” instability where
perturbations cause growth at all locations to “convective” instability where a perturbation grows as it
propagates, but at any fixed location disturbances decay away after the perturbation passes. These results
were applied to understand instabilities in the floating silicon method (FSM), which is a particular type of
horizontal ribbon growth. It was shown that increasing pull-speeds in FSM leads to increasingly unstable
thermal growth conditions, but the combination of the kinetics of faceted growth and the tangential pull
velocity can stabilize the process. As the pull speed increases, however, the process becomes increasingly
sensitive to perturbation.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, we have reported experimental and numerical stu-
dies [1,2] of the production of single-crystal silicon sheets using
the floating silicon method (FSM). FSM is a form of horizontal
ribbon growth where the solid silicon sheet floats on molten sili-
con before being removed from the furnace. A schematic of the
FSM process is shown in Fig. 1. The solid sheet of silicon grows
because of heat removal caused by a helium jet, and then floats on
the melt surface before being removed from the furnace. One of
the interesting findings from our previous studies was that there
was a { }111 facet at the growing edge of the sheet and that soli-
dification kinetics must be considered to predict the horizontal
position of the growth front as a function of pull speed. Previous
studies of horizontal ribbon growth did not consider these effects
[3–14]. In [1], it was shown that facet kinetics limit the maximum
growth rate attainable by FSM. This limitation manifested itself in
the numerical results as a turning point in the response of the
growth front position versus the pull speed; beyond a limiting pull
speed no steady solutions could be found. Although the growth
front position predicted numerically agreed well with the experi-
ment, the numerically predicted pull speed limits were often

higher than those attained in the experiment. In the experiment, a
transition to dendritic growth was often observed before reaching
the predicted pull speed limit.

The goal of this paper is to perform a stability analysis of soli-
dification including solidification kinetics and apply the results to
understand the transition to dendritic growth seen in the FSM
experiments. The most relevant previous stability analyses are
those of Coriell et al. [15,16] who analyzed the solidification of
binary alloys [15] and pure substances [16] including step propa-
gation kinetics. They showed that for growth on a vicinal plane,
step propagation can stabilize growth conditions that would nor-
mally be thermally unstable. In this work, we extend their analysis
by including the effect of a tangential solid motion on the growth
process. To understand this effect, spatial–temporal stability ana-
lysis is used [17,18]. Not to be confused with a spatial–temporal
instability such as cellular growth, spatial–temporal stability ana-
lysis predicts the system response to a localized disturbance. Using
the spatial–temporal stability analysis algorithm described in [18],
unstable growth conditions are classified as either “absolutely” or
“convectively” unstable based on this response. Absolute instability
corresponds to the case where the disturbance amplitude at any
fixed location grows in time. Convective instability corresponds to
growth of a disturbance as it propagates, but decay at any fixed
location after the initial disturbance passes. To our knowledge, this
is the first time this type of analysis has been applied to solidifi-
cation. The distinction turns out to be critical for understanding
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FSM because there is a velocity tangential to the growth direction
that causes disturbances to propagate as they grow.

2. Formulation

This is a spatial–temporal stability analysis of the faceted
growth of silicon at some misalignment angles from the [111] di-
rection. The basic problem is the same as that analyzed in [15]
except that segregation effects are not included; only pure sub-
stances are considered and a uniform tangential velocity, u, is
imposed on both the solid and liquid. A schematic of the assumed
geometry and boundary conditions is shown in Fig. 2. The mis-
alignment angle between the vertical propagation direction and
the [111] direction is θ0. The wavelength of the perturbation, λ, is
used to define a perturbation wavenumber, π λ=k 2 / . The pertur-
bation itself is assumed to be small enough in amplitude such that
the misalignment angle is bounded away from zero. The height of
the domain is given by L, which is typically assumed to be much
larger than λ and will be taken to the limit → ± ∞L . At the bottom
of the domain, liquid is assumed to enter with a velocity v such
that the unperturbed solidification front remains stationary even
though liquid is being solidified. The total energy flux in and out of
the domain is specified as fs and fl respectively where the sub-
scripts s and l respectively indicate solid and liquid in all of the
following. The domain is assumed to be infinite in the horizontal
direction because spatial–temporal stability analysis relies on the
continuous Fourier transform.

Looking ahead to the FSM analysis, the schematic shown in
Fig. 2 is meant to represent a localized region in a coordinate
system aligned with the solidification front. In the application to

FSM, this analysis has some inherent assumptions. Because the
domain is assumed infinite in the x-direction, only periodic tem-
perature perturbations in the horizontal direction can be analyzed.
In the FSM simulations, the temperature gradients normal to the
growth front are generally significantly larger than those tangen-
tial to the front so this assumption is reasonable. Another as-
sumption is that the liquid flow is uniform. This is also not a re-
strictive assumption. In the FSM simulations, a replenishment flow
was added such that both the solid and the liquid were moving
horizontally at a similar velocity. In some cases, Marangoni effects
were included which caused non-uniform flows, but this did not
significantly change the numerical results. This indicates that non-
uniform flow effects are of secondary importance.

3. Governing equations

The liquid and the solid are assumed to be incompressible with
equal density, ρ, and specific heat, c. In this case, mass conserva-
tion ensures that the velocity of the solid and liquid are every-
where v in the vertical direction and u in the horizontal direction.
The equations governing the temperature, T, in the solid and liquid
are then given by
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where ki is the thermal conductivity and =i s l, . Note that k is the
wavenumber, while ks and kl are thermal conductivities.

The boundary conditions at the bottom and top of the domain
are given by
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where for convenience we define = −L Ll and =L Ls .
At the interface between the solid and the liquid, conservation

of energy gives

ρ− ∇ ·→ = ( ) k T n L v 3i f g

where double brackets indicate a jump in a quantity across the
interface. The normal to the interface, →n , is taken to point from the
liquid towards the solid and jumps are defined as the solid
quantity minus the liquid quantity. The right side of the equation
is the energy released by solidification. Lf is the heat of fusion of
the material, and vg is the solidification velocity. For the config-

uration given in Fig. 2, vg is given by ( )→
+ −

→
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(x) is the height of the interface relative to y¼0, and ht is the
vertical velocity of the interface. In the following, subscripts of t
and x denote differentiation with respect to that variable. The
temperature at the interface is assumed to be continuous such that

= ( ) T 0. 4

Lastly, it is assumed that the interface propagates according to the
kinetic solidification model of Weinstein and Brandon [19]. This
model includes mechanisms for nucleation of atoms onto a facet,
step propagation along a facet, and roughened growth. The model
constants are all taken from [19]. The model relates the super-
cooling to the growth velocity as

− = ( )T T Kv 5e g

where all variables are evaluated on the interface, Te is the equi-
librium melting temperature, and K is the inverse of the more
typically used kinetic coefficient β which relates the growth ve-
locity to the amount of supercooling. This less standard form was

Fig. 1. Schematic of the experimental configuration.

Fig. 2. Geometry and boundary conditions for the linear stability analysis of faceted
growth.
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