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a b s t r a c t

The step-flow growth condition of Si on Si (111) near the (7�7)–“1�1” surface phase transition
temperature TC is analysed within the framework of Burton–Cabrera–Frank theory. In particular,
coexistence of both surface phases well below TC and their specific influence on the step-flow growth
behaviour is considered. We presume that under dynamical condition of growth, the surface initially
covered by only the (7�7) phase separates into domains surrounded by “1�1” areas. On such a surface,
the overall supersaturation should be reduced drastically compared to a surface with only (7�7),
resulting in much larger critical terrace width for nucleation.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Si (111) surface exhibits a surface phase transition from
(7�7) to disordered “1�1” surface structure at a temperature
TCE1100 K. Recently, we investigated the development of surface
morphology in Si molecular beam epitaxy (MBE) on mesa-
structured Si (111) surfaces near TC [1]. For a small increase in T,
significant changes in surface morphology were found, accompa-
nied by a strong increase in step-free area dimension (Fig.1), what
has not been reported so far.

Therefore, a deeper understanding of the unusual observation is
needed. In our earlier studies, the coexistence of “1�1” and (7�7)
surfaces under certain growth conditions and their specific influ-
ence on the growth behaviour was already discussed in such a
context [1]. Here, we present a more quantitative interpretation to
support this prediction using a simple step-flow growth model and
data known from the literature. The results show that indeed under
dynamical condition of growth the coexistence of both surface
phases well below 1100 K could explain our experimental findings.

2. Results and discussion

At ToTC, the 7�7 surface phase exhibits a smaller surface
energy than the “1�1” surface. However, long range order elastic
and electrostatic interactions of surface structure domains allow
the coexistence of (7�7) and “1�1” domains over an extended
T-range around TC [2]. Thereby, the size of the domains is
dependent on T and the rate of T changes. Moreover, area fraction

of the two surface phase domains was found to be also strongly
dependent on the terrace width. Triangular domains with up to
1 mm side length were observed on terraces 44 mm [3]. The size of
domains for a given T is determined by the difference in surface
free energyΔγ between the 7�7 and “1�1” surface phase, where
the T-dependence of Δγ is determined by the entropy difference
ΔS between both phases and can be expressed near Tc by: Δγ¼
(T�TC)ΔS, with ΔS¼0.013kb (kb - Boltzmann constant) [3].

Further studies show, that surface supersaturation has also a
strong impact on the formation and extension of surface phases.
Hannon et al. found that near TC the size of individual (7�7)
domains within a “1�1” surface matrix decreases under the
presence of an external Si flux [4]. The external Si flux results in a
supersaturation of adatom concentration n with respect to the
equilibrium mobile adatom density (neq) at the surface, giving rise
to an adatom chemical potential Δm¼kbT� ln(n/neq). They pointed
out that the energy cost of (7�7) domain formation relative to the
uniform “1�1” phase with higher neq has to be modified by the
energy associated with the transfer of excess adatom density to the
surrounding “1�1” area on the terrace. This energy is expressed by:
Δm� (n“1� 1”�n7� 7)¼Δm�Δn, [4] where n“1� 1” and n7� 7 are the
neq values of the “1�1” and (7�7) phase, respectively. From STM
investigations n“1� 1”E0.2 monolayer's (ML) and n7� 7E0.08 ML
were obtained, [5] which results in an excess mobile adatom density
of ΔnE0.12 ML (1 ML¼7.83�1014 atoms/cm2). This effect changes
the surface free energy Δγ by Δm�Δn, which makes the “1�1”
phase more favourable than the (7�7) phase (Fig. 2). Consequently,
phase transition is shifted by ΔT¼TC'�TC to lower T. Assuming no
change of γ around TC, ΔT can be roughly estimated by ΔT¼�
(Δn�Δm)/ΔS [4].

Hannon et al. estimated ΔT¼�3 K for a Si flux of
4.4�1012 atoms/cm2 s, which corresponds to Δm¼2�10�4 on a
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2 mm wide terrace [4]. They also suggested already that typical
growth rates used in semiconductor epitaxy lead to a more
significant change in TC. In our experiments, we use a Si flux of
about 4�1013 atoms/cm2 s, which results in a change in TC by at
least 30 K considering the same terrace width. Moreover, Δm
becomes larger on wider terraces, which consequently could result
in a further increase in “1�1” domains or shrinking of (7�7)
domains, respectively. Since we observed the (7�7)–“1�1“phase
transition at 1100 K under static conditions, a significant amount
of “1�1” domains could be present already at Tr1070 K under
the dynamical conditions of growth in our experiments. This is the
T-range, where we observed a drastic change in surface morphol-
ogy and a strong increase in step-free areas.

The supersaturation is determined by the ratio of the actual
density of mobile adatoms at the surface to neq. Following the
work of Burton, Cabrera and Frank (BCF) [6], the adatom density n
on a terrace is governed by the diffusion equation. The diffusion
equation in the steady state regime valid for complete condensa-
tion, fast attachment–detachment kinetics as well as slow moving

straight steps in x-direction scan can be written in a form

D
d2nðxÞ
dx2

þR¼ 0 ð1Þ

with D is the diffusion coefficient, and R is the rate of atom flux towards
the surface. The assumption of complete condensation is justified in
view of the very low desorption rate (between 108 and 1010 atoms/
cm2 s1 [7]) at T used in our experiments compared to the deposition
rate (1013 atoms/cm2 s1). Furthermore, it has been shown that surface
mass transport on Si (111) is governed by diffusion of adatoms on
terraces rather than attachment/detachment of atoms at steps within
the T-range of our investigation [8]. Therefore, it can be suggested that n
(x) at the step edges is equal to neq: n(0)¼n(λ)¼neq. Introducing the
dimensionless terrace width X¼x/λ, solution of Eq. (1) is

nðxÞ
neq

¼ 1þ R� λ2

2D� neq
X� R� λ2

2D� neq
X2 ð2Þ

where D�neq represents the so-called mass diffusion constant. The
corresponding supersaturationΔm, i.e. the adatom chemical potential, is
given by

Δμ¼ kbT � ln
nðxÞ
neq

� �
¼ kbT � ln 1þ R� λ2

2D� neq
X� R� λ2

2D� neq
X2

" #
ð3Þ

Midway the steps (λ/2), Δm reaches its maximum value with

Δμ¼ kbT � ln
nðλ=2Þ
neq

� �
¼ kbT

� ln 1þ R� λ2

4D� neq
� R� λ2

8D� neq

" #
¼ kbT � ln 1þ R� λ2

8D� neq

" #
ð4Þ

or with simplification for small Δm

Δμ¼ kbT � R� λ2

8D� neq
ð5Þ

Values in the range from D�neq¼107–108 s�1were reported
for the “1�1” surface [9,10]. In our analysis, we use a value of D�
neq¼8�107 s�1derived for T¼1140 K [8]. Furthermore, D�neq
can be suggested to be thermally activated [10]

D� neq ¼ const:e�½ðED þEaÞ=kbT� ð6Þ
where ED is the surface diffusion barrier and Ea is the adatom
creation energy [10]. At TZ1100 K, EDþEa¼1.3 eV on “1�1”; with
ED¼1.1 eV and ED¼0.2 eV were reported [8,10]. If this is applied to
the value of D�neq¼8�107 s�1at 1140 K, we get D�neq¼
6.3�107 s�1 at 1120 K.
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Fig. 1. Summarised data of step-free areas (λ2) (λ – step-free terrace width) as a
function of temperature (T) (Arrhenius graph), with corresponding AFM images of
the mesa surfaces.

Fig. 2. Schematic illustration of the change in surface energy of the “1�1” and
7�7 phase at T around TC and the shift in TC due to the energy associated with the
transfer of excess adatom density (Δm�Δn).
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Fig. 3. Excess chemical potential profile across a 10 mm wide terrace calculated for
a Si flux of 4�1013 cm�2 s�1 at 1120 K, where only the “1�1” surface phase was
observed. Critical supersaturation for nucleation is also indicated by the dotted line.
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