

Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/00220248)

Journal of Crystal Growth

journal homepage: www.elsevier.com/locate/j/ $\frac{1}{2}$

Influence of (7×7) –"1 \times 1" phase transition on step-free area formation in molecular beam epitaxial growth of Si on Si (111)

Andreas Fissel^{*}, Ayan Roy Chaudhuri, Jan Krügener, H. Jörg Osten

Institute of Electronic Materials and Devices, Leibniz University Hannover, Schneiderberg 32, 30167 Hannover, Germany

article info

ABSTRACT

Communicated by A. Brown Available online 21 February 2015

Keywords: A1. Growth models A1. Surface structure A3. Molecular beam epitaxy B1. Silicon

The step-flow growth condition of Si on Si (111) near the (7×7) –"1 \times 1" surface phase transition temperature T_c is analysed within the framework of Burton–Cabrera–Frank theory. In particular, coexistence of both surface phases well below T_c and their specific influence on the step-flow growth behaviour is considered. We presume that under dynamical condition of growth, the surface initially covered by only the (7×7) phase separates into domains surrounded by " 1×1 " areas. On such a surface, the overall supersaturation should be reduced drastically compared to a surface with only (7×7) , resulting in much larger critical terrace width for nucleation.

 \odot 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Si (111) surface exhibits a surface phase transition from (7×7) to disordered "1 \times 1" surface structure at a temperature $T_C \approx 1100$ K. Recently, we investigated the development of surface morphology in Si molecular beam epitaxy (MBE) on mesastructured Si (111) surfaces near T_c [\[1\]](#page--1-0). For a small increase in T, significant changes in surface morphology were found, accompanied by a strong increase in step-free area dimension ([Fig.1](#page-1-0)), what has not been reported so far.

Therefore, a deeper understanding of the unusual observation is needed. In our earlier studies, the coexistence of " 1×1 " and (7×7) surfaces under certain growth conditions and their specific influence on the growth behaviour was already discussed in such a context [\[1\].](#page--1-0) Here, we present a more quantitative interpretation to support this prediction using a simple step-flow growth model and data known from the literature. The results show that indeed under dynamical condition of growth the coexistence of both surface phases well below 1100 K could explain our experimental findings.

2. Results and discussion

At $T < T_c$, the 7×7 surface phase exhibits a smaller surface energy than the " 1×1 " surface. However, long range order elastic and electrostatic interactions of surface structure domains allow the coexistence of (7×7) and "1 \times 1" domains over an extended T-range around T_c [\[2\]](#page--1-0). Thereby, the size of the domains is dependent on T and the rate of T changes. Moreover, area fraction of the two surface phase domains was found to be also strongly dependent on the terrace width. Triangular domains with up to 1 μ m side length were observed on terraces $>$ 4 μ m [\[3\]](#page--1-0). The size of domains for a given T is determined by the difference in surface free energy $\Delta \gamma$ between the 7 \times 7 and "1 \times 1" surface phase, where the T-dependence of $\Delta\gamma$ is determined by the entropy difference ΔS between both phases and can be expressed near T_c by: $\Delta \gamma =$ $(T-T_C)\Delta S$, with ΔS =0.013 k_b (k_b - Boltzmann constant) [\[3\].](#page--1-0)

Further studies show, that surface supersaturation has also a strong impact on the formation and extension of surface phases. Hannon et al. found that near T_c the size of individual (7 \times 7) domains within a " 1×1 " surface matrix decreases under the presence of an external Si flux [\[4\].](#page--1-0) The external Si flux results in a supersaturation of adatom concentration n with respect to the equilibrium mobile adatom density (n_{eq}) at the surface, giving rise to an adatom chemical potential $\Delta \mu = k_b T \times \ln(n/n_{eq})$. They pointed out that the energy cost of (7×7) domain formation relative to the uniform "1 \times 1" phase with higher n_{eq} has to be modified by the energy associated with the transfer of excess adatom density to the surrounding "1 \times 1" area on the terrace. This energy is expressed by: $\Delta \mu \times (n_{\gamma \times 1} - n_{7 \times 7}) = \Delta \mu \times \Delta n$, [\[4\]](#page--1-0) where $n_{\gamma \times 1}$ and $n_{7 \times 7}$ are the n_{eq} values of the "1 × 1" and (7 × 7) phase, respectively. From STM investigations $n_{\gamma} \times 0.2$ monolayer's (ML) and $n_{7 \times 7} \approx 0.08$ ML were obtained, [\[5\]](#page--1-0) which results in an excess mobile adatom density of $\Delta n \approx 0.12$ ML (1 ML=7.83 × 10¹⁴ atoms/cm²). This effect changes the surface free energy $\Delta \gamma$ by $\Delta \mu \times \Delta n$, which makes the "1 × 1" phase more favourable than the (7×7) phase [\(Fig. 2\)](#page-1-0). Consequently, phase transition is shifted by $\Delta T = T_C - T_C$ to lower T. Assuming no change of γ around T_c , ΔT can be roughly estimated by $\Delta T = (\Delta n \times \Delta \mu)/\Delta S$ [\[4\].](#page--1-0)

Hannon et al. estimated $\Delta T = -3$ K for a Si flux of 4.4×10^{12} atoms/cm² s, which corresponds to $\Delta \mu = 2 \times 10^{-4}$ on a

^{*} Corresponding author.

Fig. 1. Summarised data of step-free areas (λ^2) (λ – step-free terrace width) as a function of temperature (T) (Arrhenius graph), with corresponding AFM images of the mesa surfaces.

Fig. 2. Schematic illustration of the change in surface energy of the " 1×1 " and 7×7 phase at T around T_c and the shift in T_c due to the energy associated with the transfer of excess adatom density ($\Delta \mu \times \Delta n$).

 $2 \mu m$ wide terrace [\[4\].](#page--1-0) They also suggested already that typical growth rates used in semiconductor epitaxy lead to a more significant change in T_c . In our experiments, we use a Si flux of about 4×10^{13} atoms/cm² s, which results in a change in T_c by at least 30 K considering the same terrace width. Moreover, $\Delta \mu$ becomes larger on wider terraces, which consequently could result in a further increase in "1 \times 1" domains or shrinking of (7 \times 7) domains, respectively. Since we observed the (7×7) –"1 \times 1"phase transition at 1100 K under static conditions, a significant amount of "1 \times 1" domains could be present already at $T \leq 1070$ K under the dynamical conditions of growth in our experiments. This is the T-range, where we observed a drastic change in surface morphology and a strong increase in step-free areas.

The supersaturation is determined by the ratio of the actual density of mobile adatoms at the surface to n_{eq} . Following the work of Burton, Cabrera and Frank (BCF) $[6]$, the adatom density n on a terrace is governed by the diffusion equation. The diffusion equation in the steady state regime valid for complete condensation, fast attachment–detachment kinetics as well as slow moving straight steps in x-direction scan can be written in a form

$$
D\frac{d^2n(x)}{dx^2} + R = 0\tag{1}
$$

with *D* is the diffusion coefficient, and *R* is the rate of atom flux towards the surface. The assumption of complete condensation is justified in view of the very low desorption rate (between 10^8 and 10^{10} atoms/ cm^2 s¹ [\[7\]](#page--1-0)) at *T* used in our experiments compared to the deposition rate (10^{13} atoms/cm² s¹). Furthermore, it has been shown that surface mass transport on Si (111) is governed by diffusion of adatoms on terraces rather than attachment/detachment of atoms at steps within the T-range of our investigation $[8]$. Therefore, it can be suggested that n (x) at the step edges is equal to $n_{eq}: n(0) = n(\lambda) = n_{eq}$. Introducing the dimensionless terrace width $X = x/\lambda$, solution of Eq. (1) is

$$
\frac{n(x)}{n_{\text{eq}}} = 1 + \frac{R \times \lambda^2}{2D \times n_{\text{eq}}} X - \frac{R \times \lambda^2}{2D \times n_{\text{eq}}} X^2
$$
\n(2)

where $D \times n_{eq}$ represents the so-called mass diffusion constant. The corresponding supersaturation $\Delta \mu$, i.e. the adatom chemical potential, is given by

$$
\Delta \mu = k_{\text{b}} T \times \ln \left[\frac{n(\chi)}{n_{\text{eq}}} \right] = k_{\text{b}} T \times \ln \left[1 + \frac{R \times \lambda^2}{2D \times n_{\text{eq}}} X - \frac{R \times \lambda^2}{2D \times n_{\text{eq}}} X^2 \right] \tag{3}
$$

Midway the steps ($\lambda/2$), $\Delta\mu$ reaches its maximum value with

$$
\Delta \mu = k_{\text{b}} T \times \ln \left[\frac{n(\lambda/2)}{n_{\text{eq}}} \right] = k_{\text{b}} T
$$

$$
\times \ln \left[1 + \frac{R \times \lambda^2}{4D \times n_{\text{eq}}} - \frac{R \times \lambda^2}{8D \times n_{\text{eq}}} \right] = k_{\text{b}} T \times \ln \left[1 + \frac{R \times \lambda^2}{8D \times n_{\text{eq}}} \right] \tag{4}
$$

or with simplification for small $\Delta \mu$

$$
\Delta \mu = k_{\rm b} T \times \frac{R \times \lambda^2}{8D \times n_{\rm eq}} \tag{5}
$$

Values in the range from $D \times n_{eq} = 10^7 - 10^8 \text{ s}^{-1}$ were reported for the "1 \times 1" surface [\[9,10\].](#page--1-0) In our analysis, we use a value of D \times $n_{\text{eq}} = 8 \times 10^7 \text{ s}^{-1}$ derived for T = 1140 K [\[8\].](#page--1-0) Furthermore, $D \times n_{\text{eq}}$ can be suggested to be thermally activated [\[10\]](#page--1-0)

$$
D \times n_{eq} = const.e^{-[(E_D + E_a)/k_bT]}
$$
 (6)

where E_D is the surface diffusion barrier and E_a is the adatom creation energy [\[10\]](#page--1-0). At $T \ge 1100$ K, $E_D + E_a = 1.3$ eV on "1 \times 1"; with $E_D=1.1$ eV and $E_D=0.2$ eV were reported [\[8,10\].](#page--1-0) If this is applied to the value of $D \times n_{\text{eq}} = 8 \times 10^7 \text{ s}^{-1}$ at 1140 K, we get $D \times n_{\text{eq}} =$ 6.3×10^7 s⁻¹ at 1120 K.

Fig. 3. Excess chemical potential profile across a 10 μ m wide terrace calculated for a Si flux of 4×10^{13} cm⁻² s⁻¹ at 1120 K, where only the "1 \times 1" surface phase was observed. Critical supersaturation for nucleation is also indicated by the dotted line.

Download English Version:

<https://daneshyari.com/en/article/8149769>

Download Persian Version:

<https://daneshyari.com/article/8149769>

[Daneshyari.com](https://daneshyari.com)