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a b s t r a c t

The linear stability of a single component axi-symmetrical solid in contact with its melt is theoretically
investigated with respect to the development of longitudinal sinusoidal fluctuations of wavelengths
λo2πRe, with Re its radius, in the solidification and melting regime. In the solidification regime, the
applied stress adds to the temperature gradient to favor the development of the surface fluctuations. In
the melting regime where the temperature gradient has a smoothing effect, the applied stress is the
main destabilizing source for the cylinder that has been found to undergo morphological instability
below a critical radius.

& 2014 Elsevier B.V. All rights reserved.

The morphological evolution of solids is a long-standing problem
that has been widely studied from both experimental and theore-
tical point of view. When a planar solid is submitted to uniaxial
stress for example, its surface becomes unstable due to the so-called
Asaro–Tiller–Grinfeld (ATG) instability [1–3]. During the solidifica-
tion process of a planar solid in contact with its melt, the Mullins–
Sekerka (MS) instability also takes place when the growth velocity of
the solid–liquid interface exceeds a critical value [4]. The competi-
tion between ATG and MS instabilities has been then characterized
and the stress has been found to modify the perturbation develop-
ment [5]. In the case of a spherical particle growing in a liquid,
Mullins and Sekerka [6] have demonstrated that the shape fluctua-
tions should appear beyond a critical radius of the sphere. The effect
of composition stress on the development of the surface fluctuations
has been then characterized [7] in the formalism developed by Cahn
and Larché [8–10] to describe the diffusion under stress in alloys.
When the particle is growing into a solid matrix, the effect of misfit
strain has been also studied on the morphological evolution of the
particle as well as the effect of the elastic coefficients of the matrix
and precipitate phases [11,12]. More recently, the effect of a
controlled far-field heat flux on the evolution of two and three
dimensional solids growing in a undercooled liquid has been
investigated in the linear and non-linear regimes and the possibility
of self-similar growth has been discussed [13–16]. Likewise, the
shape evolution of a cylinder growing by diffusion in a liquid has
been studied in the low supersaturation condition such that the
quasi-static approximation has been used for solving the diffusion
problem [17]. The cases of radial and longitudinal fluctuations have
been considered. In particular, the development of longitudinal

fluctuations with a wavelength increasing with the cylinder radius
has been found to be favorable beyond a critical radius while
perturbations of constant wavelength have been found to develop
in a finite range of radius values. When the cylinder is growing in a
solid phase, the development of radial fluctuations has been also
characterized when a misfit strain and a supplementary stress in the
matrix are considered [25,26]. The stress-induced morphological
instability has been studied in the case where a solid or liquid layer
is embedded in a two-phase solid under stress [28,29]. The effect of
stress and elastic coefficients of the solid phases has been then
characterized on the roughness development at the interfaces. The
stability of a uniaxially stressed solid has been characterized with
respect to the development by surface diffusion of axi-symmetrical
and nonaxi-symmetrical perturbations [27].

The solidification of an ice cylinder in distilled water or in
aqueous solutions has been considered from both experimental
and theoretical point of view [18–20]. The development of long-
itudinal and radial fluctuations of the cylinder has been thus
characterized in both linear and non-linear regimes and the liquid–
solid interface energy has been experimentally determined. It has
been found that the Mullins–Sekerka analysis [6] initially developed
for a growing crystal into a binary melt is satisfied for the growing ice
cylinder and that the different solutes have no measurable effect on
its morphological evolution. Likewise, the mechanical behavior of a
fresh-water ice cylinder under compression has been considered and
the ductile-to-brittle transition and the formation of wing cracks
have been characterized [21–24].

In this work, the effect of a uniaxial stress has been theoreti-
cally investigated on the development of longitudinal fluctuations
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of the radius of a solid cylinder in contact with its melt in the
solidification and melting regimes, respectively. The growth rate of
the fluctuations and the critical radii associated with the morpho-
logical changes have been determined for each regime. The case of
an ice cylinder in a bath of distillated water is discussed.

1. Modeling

A solid cylinder of length 2L and radius Re is considered in Fig. 1
which is submitted to an external uniaxial stress s0 in the region
rrRi on both end-surfaces located at z¼ 7L, with ðr;θ; zÞ the
cylindrical coordinate system. These loading conditions would
correspond to a creep experiment for the cylinder under constant
applied force πR2

i s0 when RioRe and when the time variation of
Ri through it deformation dependence can be neglected. When
Ri¼Re, the cylinder is thus submitted to an increasing applied force
πR2

es0. The cylinder is in contact with its melt such that the
temperature Tb is set to be constant at r¼ Rb, where Rb is the bath
radius. The stress tensor sð0Þ in the cylinder has been determined
far from the two end-surfaces when its length is large compared to
its radius, i.e. 2L⪢Re. In the framework of linear and isotropic
elasticity theory, the displacement field u0 in the center of the
cylinder has been taken to be [30]

u0
r ðrÞ ¼ P0r; ð1Þ

u0
z ðzÞ ¼Q0z; ð2Þ

with P0 and Q0 two constants that have been determined in the
infinite length approximation from the following mechanical
equilibrium conditions:

s0
rrðReÞ ¼ 0; ð3Þ

4πR2
es0

zz ¼ 4πR2
i s0; ð4Þ

where the stress component sij
0 has been determined from the

Hooke law of isotropic elasticity [30] with the help of the elastic
displacement field displayed in Eqs. (1) and (2). It yields

P0 ¼ � s0ν
2μð1þνÞ

R2
i

R2
e

; ð5Þ

Q0 ¼
s0

2μð1þνÞ
R2
i

R2
e

: ð6Þ

From Eqs. (5) and (6), the stress field in the center of the solid is
given by

s0
rrðrÞ ¼ s0

θθðrÞ ¼ 0; ð7Þ

s0
zz ¼

Ri

Re

� �2

s0; ð8Þ

where the non-zero stress component s0
zz has been found to be

constant in the cylinder of a given external radius Re.
In the following, the kinetics of the cylinder in both solidifica-

tion and melting regimes is governed by the following set of
equations. It is first assumed that the temperature fields satisfy to
Laplace equation [6,18–20]:

∇2TL ¼∇2TS ¼ 0; ð9Þ
where the subscripts L and S denote the liquid and solid respec-
tively. The boundary conditions satisfied by the temperature field
in the liquid and solid phases then write at the bath and interface
radii respectively labeled Rb and re:

TLðRbÞ ¼ Tb; ð10Þ

TLðreÞ ¼ TSðreÞ; ð11Þ

TLðreÞ ¼ TM�TM

LV
ðγKþϵÞ; ð12Þ

with TM is the melting temperature of a flat interface, LV is the
latent heat per unit volume of the solid, γ is the isotropic solid–
liquid interface energy per unit surface and K is the interface
curvature for a cylinder of radius re. Summation over repeated
indices being implied, the elastic energy density ϵ is thus defined
as

ϵ¼ 1
2sijϵij; ð13Þ

where sij and ϵij are the stress and strain components in the
cylinder, respectively. The interface velocity V is finally determined
by

V ¼ L�1
V ðkS∇TS�kL∇TLÞ � n; ð14Þ

with kL and kS are the thermal conductivities of the liquid and solid
respectively and n is the unit normal to the interface pointing into
the liquid. It can be underlined that the diffusion-controlled
growth (or melting) of the cylinder would be treated by modifying
the above set of equations describing the cylinder evolution by
heat flow [6]. The linear stability analysis is conducted for the
cylinder whose radius equation is given by

re ¼ Reþδ cos ðkr=ReÞ; ð15Þ
with δ is the perturbation amplitude and k is a positive real
number that can be related to a wavelength λ¼ 2πRe=k.

The temperature fields, stress and strain tensors have been
then written as

TLðr; zÞ ¼ T ð0Þ
L ðrÞþT ð1Þ

L ðr; zÞ; ð16Þ

TSðr; zÞ ¼ T ð0Þ
S þT ð1Þ

S ðr; zÞ; ð17Þ

sijðr; zÞ ¼ sð0Þ
ij ðrÞþsð1Þ

ij ðr; zÞ; ð18Þ

ϵijðr; zÞ ¼ ϵð0Þij ðrÞþϵð1Þij ðr; zÞ; ð19Þ

where the indices 0 and 1 hold for the unperturbed and perturbed
regimes, respectively. The general expressions of the unperturbed
fields of temperature in the liquid and solid phases which satisfy
to Laplace equation (9) are given by

T ð0Þ
L ðrÞ ¼ A0

L þB0
L lnðr=ReÞ; ð20Þ

Fig. 1. A cylinder of radius Re is considered in contact with its melt in a bath of
radius Rb. A uniaxial stress s0 is applied at both end-surfaces on a disk of radius Ri.
The length 2L of the cylinder is assumed to be much greater than its radius Re.
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