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a b s t r a c t

In Czochralski growth, forced convection is always accompanied by natural convection. Hence, an
effective segregation coefficient, which accounts for both forced and buoyancy-induced convection, was
recently proposed. This combined-convection coefficient is presented here in dimensionless form, kCC
(NuFC, NuNC, Pe), where NuFC and NuNC are Nusselt numbers for forced and natural convection and Pe is
Peclet number for convection due to freezing. Several Nu-number correlations, relevant for Czochralski
growth, are presented.

The seminal diffusion coefficients of dopants in molten Si, reported by Kodera, are revisited. Kodera's
calculations were done using the BPS model, which does not account for buoyancy-induced flow. In a
part of Kodera's experiments, natural convection was significant, and has “inflated” Kodera's coefficients D
[cm2/s].

The kCC correlation is applied to Kodera's data to provide more precise values of D. The impact of
buoyancy-induced flow on CZ segregation is demonstrated.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The equilibrium segregation coefficient, k0≡CS/C0 is a funda-
mental property of any solid—liquid binary system, and appears in
a great number of mathematical expressions involving redistribu-
tion of the solute [1]. It relates the solute concentration in the solid
CS, to the interfacial solute concentration C0, in the melt. During
solidification at a finite freezing rate f, the solute rejected at the
solid—liquid interface, forms a solute boundary layer, as it is
carried away by convection. In the presence of convection, one
uses the effective segregation coefficient keff≡CS/CL, to relate CS to
concentration in the bulk liquid phase, CL.

1.1. Forced convection models of keff, based on film-thickness

In the seminal 1953 paper, Burton, Prim and Slichter [2]
introduced the BPS model or theory, where the level of melt
convection is quantified by a fictive “diffusion boundary layer” of
thickness δ [1]. The BPS segregation coefficient kBPS is an effective
segregation coefficient. It is a useful parameter for crystal growth,
because it correlates the composition of the pulled rotating crystal,
to composition of the bulk melt [1].

The BPS model is comprised of two equations. The first
equation relates kBPS to the thickness of the fictive static solute

layer δstatic,

kBPS ¼
CS

CL
¼ k0

1þ ð1−k0Þexp − f δstatic
D

� � BPS ð1Þ

where D is diffusion coefficient. Solute transfer through δstatic, is by
diffusion only (no fluid flow). The second BPS equation, is used to
calculate the solute-layer thickness, controlled by the flow induced
by a rotating disk,

δFC ¼ 1:61D1=3ν1=6ω−1=2 ¼ 1:61
ν

ω

� �1=2
Sc−1=3 BPS ð2Þ

where Sc¼v/D is Schmidt number, ω is rotation rate, and ν is
kinematic viscosity. The subscript FC is used to highlight the fact
that melt is stirred by forced convection. The assumption δsta-
tic¼δFC remains a weak spot of the BPS theory.

Equation BPS (2) is an outcome of the Levich's asymptotic (Sc-∞)
solution for the mass flux j, in laminar flow, driven by an infinite
rotating disk [3],

j¼ −D
dC
dx

���
x ¼ 0

¼D
ΔC
δFC

¼ 0:62D
ν

ω

� �1=2
Sc1=3ΔC ð3Þ

In 1963, Kodera employed the BPS model to calculate the
diffusion coefficients of dopants in silicon melts [4]. These diffu-
sion coefficients are used in most handbooks, although the
soundness of the BPS model has been challenged [5–8]. Several
alternative models for keff, all based on film thickness δ, were
proposed [5–8].
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In summary, the effective segregation coefficients based on δFC,
accounts for laminar disk-driven convection, and not for
buoyancy-induced. Furthermore, δFC does not account the freezing
rate f, while it is evident that δ↘ for f ↗.

2. Combined (or mixed) convection coefficient

In the presence of Earth gravity, buoyancy-induced convection
is unavoidable; forced convection is always accompanied by
natural convection.

Mixed convection is combined forced and buoyancy-induced
convection. In the heat and mass transfer literature [9,10], it is well
established that parameter Gr=Re2 scales the relative importance
of natural convection relative to forced convection. The Grashof
and Reynolds number are,

Gr ¼ gðΔρ=ρÞH3

v2
ð4Þ

Re¼ ωR2

ν
ð5Þ

where g¼981 cm/s2 is gravitational acceleration, H is melt height
and R is disk radius. For

aÞ Gr=Re2o0:1; natural convection is negligible:
bÞ Gr=Re2410; forced convection is negligible:
cÞ 0:1oGr=Re2o10; neither is negligible:

9>=
>; ð6Þ

Convection fluxes are quantified using convection coefficients h
[cm/s] [9,11],

j¼ −D
dC
dx

���
x ¼ 0

¼ hΔC ð7Þ

or dimensionless Nusselt1 numbers,

Nu≡
h R
D

where R is characteristic length, e.g. crystal radius.

2.1. Combined-convection segregation coefficient, kCC (Numix, Pe)

Segregation in CZ growth is controlled by combined: (a) forced
convection due to crystal rotation; (b) buoyancy-induced natural
convection and (c) forced convection due to freezing. Such
combined convection is accounted for in the recently proposed
formula [11], which is given here as a function of dimensionless
parameters,

kCCðNumix; PeÞ ¼
CS

CL
¼ k0

1−ð1−k0ÞPe=ðNun
mix þ PenÞ1=n

ð8Þ

where,

Pe≡
f R
D

is the Peclet number, accounting for convection due to freezing.
Numix accounts for mixed convection [9,11],

Num
mix ¼Num

FC þ Num
NC ð9Þ

which is comprised of forced (NuFC) and natural (NuNC). m is 3–4
[9]. Eqs. (8) and (9) are combined in a single correlation for kCC,

kCC ¼
k0

1−ð1−k0ÞPe=NuCC
ð10Þ

where the combined-convection Nusselt number is

Nun
CC ¼ ðNuFC

m þ NuNC
mÞn=m þ Pen

Note that NuCC depends on the freezing rate f, while δFC, does
not. Further advantages of the combined-convection coefficient
kCC compared to kBPS are

(a) buoyancy driven convection, unavoidable on Earth, is accounted
for;

(b) numerous correlations for NuFC and NuNC are available for
laminar or turbulent flow, and finite Sc numbers.

Thus, NuCC is a “global” convection coefficient, which accounts
for combined: (i) forced convection due to crystal rotation; (ii)
buoyancy-induced natural convection and (iii) forced convection
due to freezing.

Next we present a number of NuFC correlations, relevant for CZ
growth.

2.2. Forced disk-driven convection

Convection driven by rotating disks has been considered in
much detail in the monograph “Hydrodynamic Resistance and
Heat Loss of Rotating Solids” by Dorfman (1963) [13]. For forced
convection, the heat transfer correlations (HT) are converted to
mass transfer, using the following transformation [9–11,14],

NuHT ¼
hHTR
λ

-Nu¼ hR
D

ð11Þ

Pr-Sc

where hHT is convection heat transfer coefficient and λ is thermal
conductivity. The recent monograph by Shevchuk (2009) gives a
review of correlations for convective heat and mass transfer [14].
Next we list these applicable to the Czochralski (CZ) process.

2.2.1. Nu for laminar convection and 1oSco∞
For laminar flow driven by a rotating disk, Nu is not a function

of the radial distance r. Thus, the average Nu number is equal to
the local number. The general form of a correlation for the mass
transfer Nusslet number in laminar flow is [14,15]:

NuFC ¼
hR
D

¼ CRe1=2Sc1=3 ð12Þ

where C is a coefficient. Eq. (3) combined with definition (7)
yields,

hSc-∞
FC ¼ 0:62D

ω

ν

� �1=2
Sc1=3

and,

NuSc-∞
FC ¼ 0:62

ωR2

ν

 !1=2

Sc1=3 ¼ 0:62Re1=2Sc1=3 ð13Þ

Shevchuk's book, in p. 36 provides the exact values of
NuFC=Re1=2 for 1oSco∞ [14]. The exact values are plotted in
Fig. 1 along with Eq. (13) which gives 17.2% error for Sc¼10. We
recently proposed [11],

Nu5oSco100
FC ¼ 0:485Re1=2Sc0:373 ð14Þ

which gives less than 1% error in the 10oSco130 range, and less
than 4% error for 5oSco500, range see Fig. 1. The correlation
presented in Newman's book [16], also shown in Fig. 1, gives less
than 4% error for 2oSco∞,

Nu2oSco∞
FC ¼ 0:62045Re1=2Sc1=3=ð1þ 0:2980Sc−1=3

þ0:14514Sc−2=3Þ ð15Þ1 The mass-transfer Nusselt number (Nu), also known as the Sherwood
number (Sh).
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