Agricultural and Forest Meteorology 213 (2015) 240-250

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

. . . . = Agricultural
Contents lists available at ScienceDirect d

an
Forest Meteorology

Effects of in-situ and reanalysis climate data on estimation of cropland @Cmmk
gross primary production using the Vegetation Photosynthesis Model

Cui Jin?, Xiangming Xiao®"*, Pradeep Wagle?, Timothy Griffis¢, Jinwei Dong?,
Chaoyang Wu¢, Yuanwei Qin?, David R. Cook®

a Department of Microbiology and Plant Biology, and Center for Spatial Analysis, University of Oklahoma, Norman, OK 73019, USA
b Institute of Biodiversity Sciences, Fudan University, Shanghai 200433, China

¢ Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN 55108, USA

d Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China

¢ Argonne National Laboratory, Environmental Science Division, Lemont, IL 60439, USA

ARTICLE INFO

Article history:

Received 3 January 2015

Received in revised form 27 May 2015
Accepted 6 July 2015

Available online 6 August 2015

Keywords:

Vegetation Photosynthesis Model (VPM)
NARR

MODIS

AmeriFlux

Downward shortwave radiation
Vegetation indices

ABSTRACT

Satellite-based Production Efficiency Models (PEMs) often require meteorological reanalysis data such
as the North America Regional Reanalysis (NARR) by the National Centers for Environmental Predic-
tion (NCEP) as model inputs to simulate Gross Primary Production (GPP) at regional and global scales.
This study first evaluated the accuracies of air temperature (Tyarr) and downward shortwave radia-
tion (Rnarr) of the NARR by comparing with in-situ meteorological measurements at 37 AmeriFlux
non-crop eddy flux sites, then used one PEM - the Vegetation Photosynthesis Model (VPM) to sim-
ulate 8-day mean GPP (GPPypy) at seven AmeriFlux crop sites, and investigated the uncertainties in
GPPypy from climate inputs as compared with eddy covariance-based GPP (GPPgc). Results showed that
Tnarr agreed well with in-situ measurements; Ryagr, however, was positively biased. An empirical linear
correction was applied to Rnarg, and significantly reduced the relative error of Ryarr by ~25% for crop
site-years. Overall, GPPypy calculated from the in-situ (GPPypygc)), original (GPPypynarr)) and adjusted
NARR (GPPypyadjnarr)) Climate data tracked the seasonality of GPPgc well, albeit with different degrees
of biases. GPPypygc) showed a good match with GPPgc for maize (Zea mays L.), but was slightly under-
estimated for soybean (Glycine max L.). Replacing the in-situ climate data with the NARR resulted in a
significant overestimation of GPPypnnarr) (18.4/29.6% for irrigated/rainfed maize and 12.7/12.5% for irri-
gated/rainfed soybean). GPPypy(agjnarr) Showed a good agreement with GPPypyec) for both crops due to
the reduction in the bias of Ryarg. The results imply that the bias of Ryagg introduced significant uncer-
tainties into the PEM-based GPP estimates, suggesting that more accurate surface radiation datasets are
needed to estimate primary production of terrestrial ecosystems at regional and global scales.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

croplands have an annual sum of 11PgCyr~! GPP, accounting for
~10% of the global terrestrial GPP (Chen et al., 2014). Crop cultiva-

Croplands cover 12% of the global ice-free terrestrial surface
(Ramankutty et al., 2008) and provide food for more than seven
billion people in the world. Increasing demand for food under
the changing climate is one of the great challenges in the com-
ing decades (Guanter et al., 2014; Lobell and Asner, 2003). Gross
Primary Production (GPP) of croplands is the total carbon uptake
through photosynthesis. A recent modeling study estimated that
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tion and production vary substantially over space and time. Thus,
an accurate quantification of cropland GPP is critical for global food
security (Wheeler and von Braun, 2013), biofuel production (Landis
et al., 2008), and understanding variations in the terrestrial carbon
cycle (Haberl et al., 2007).

Production Efficiency Models (PEMs) have been widely used to
quantify the spatial-temporal GPP variations of terrestrial ecosys-
tems using the satellite and climate data as inputs. The PEMs,
originating from Monteith’s theoretical concept about light use
efficiency (LUE) (Monteith, 1972; Monteith and Moss, 1977), esti-
mate GPP as the product of the photosynthetically active radiation
(PAR, MJm~2), the fraction of PAR absorbed by the vegetation
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(fPAR), and the conversion efficiency of absorbed PAR for carbon
fixation (&, gCMJ~1) (GPP=¢ x fPAR x PAR). The PEMs for crop-
lands can be classified into two categories based on fPAR and
¢ estimation methods. The first category calculates fPAR and ¢
separately. This approach has been applied in the Global Produc-
tion Efficiency Model (GLO-PEM) (Prince and Goward, 1995), the
MODIS Daily Photosynthesis model (MODIS-PSN) (Running et al.,
2000), the C-Fix model (Veroustraete et al., 2002), and the Veg-
etation Photosynthesis Model (VPM) (Xiao et al., 2004a,b). The
second type of PEMs, referred as the Greenness and Radiation (GR)
model, uses the chlorophyll-related vegetation indices (VI ) as a
proxy of ¢ x fPAR (GPP o VI, x PAR) (Gitelson et al., 2006; Peng and
Gitelson, 2011,2012; Peng et al.,2011; Wu et al., 2009; Zhang et al.,
2014, 2015).

Challenges remain, however, in applying PEMs due to model
structure and model inputs. Several attempts have been made to
address the uncertainties from the PEM algorithm itself, includ-
ing the assumption of linear response of photosynthesis to light
intensity (Chenetal., 1999), constant maximum LUE for one ecosys-
tem (Heinsch et al., 2006), the impacts of diffuse radiation (He
et al., 2013; Zhang et al., 2012), and the incomplete integration of
environmental regulations (temperature, water, phenology, etc.) to
photosynthetic processes (Dongetal.,2015; Yuanetal.,2014). Most
uncertainty analyses overlooked the potential impacts of model
inputs on the application of PEMs to regional or global primary
production monitoring.

Meteorological reanalysis data produces continuous and near
real-time climate monitoring via data assimilation models, and has
been the major climate input of PEMs for the large-scale primary
production simulation (Feng et al., 2007; Running et al., 2004; Xiao
etal.,,2011; Yuan et al., 2010). Studies have reported that the mete-
orological reanalysis data can be spatially and temporally biased
from the ground observations, in particular for downward short-
wave radiation when estimating PAR (Babst et al., 2008; Cai et al.,
2014; Decker et al., 2012; Troy and Wood, 2009; Zhang et al., 2007;
Zhaoetal.,2006,2013a; Zibetal.,2012). PEMs have been found very
sensitive to the accuracy of climate reanalysis variables (Cai et al.,
2014; Heinsch et al., 2006; Zhang et al., 2007; Zhao et al., 2006).
For example, Heinsch et al. (2006) reported that the errors associ-
ated with the standard MODIS GPP product were mainly attributed
to the NASA'’s Data Assimilation Office (DAO) reanalysis data. Pre-
vious sensitivity analyses of PEMs to climate inputs focused on
global reanalysis data, the spatial resolution of which is too coarse
to delineate the local climatic variations.

The North America Regional Reanalysis (NARR) by the National
Centers for Environmental Prediction (NCEP) is the only currently
available long-term regional reanalysis data. Compared with the
NCEP global reanalysis datasets, the NARR substantially improves
the spatio-temporal resolutions along with the accuracy of climate
variables (Mesinger et al., 2006) and could be an alternative cli-
mate driver of regional GPP estimates in particular for croplands,
one of the most heterogeneous landscapes. There has been very
limited research regarding the uncertainties of PEMs in relation to
the NARR. Therefore, careful investigation of the accuracy of the
NARR and its impacts on cropland GPP estimates at site level is
an indispensable step prior to the large scale application of these
tools.

The objectives of this study were to: (1) evaluate the accuracy
of the NARR (air temperature and downward shortwave radia-
tion) as compared to the in-situ observations from the AmeriFlux
network at 8-day intervals; (2) adjust the NARR based on the sta-
tistical differences from in-situ meteorological measurements; and
(3) quantify the impacts of different climate inputs (in-situ mete-
orological data and the original and adjusted NARR data) on the
GPP simulation for maize and soybean using the VPM at seven
AmeriFlux crop sites (40 site-years).

2. Data and methods
2.1. NARR

The NARR is produced at a spatial resolution of 32 km and a tem-
poral resolution of 3-h. We obtained the NARR daily gridded air
temperature (Tyagr) and downward shortwave radiation (Ryagr)
from http://www.esrl.noaa.gov/psd/. The daily Tyarg and Ryagrgr for
the pixels covering AmeriFlux sites were extracted for the avail-
able site-years at 44 AmeriFlux sites and were aggregated to 8-day
intervals to match the temporal resolution of MODIS products.

2.2. MODIS land surface reflectance, vegetation indices products

This study used the 8-day 500 m MODIS Surface Reflectance
product - MODO09AT1 to derive vegetation indices. The time-series
MODO09A1 data for the crop sites were extracted from the MODIS
data portal at the Earth Observation and Modeling Facility (EOMF),
University of Oklahoma (http://www.eomf.ou.edu/visualization/
manual/). The Enhanced Vegetation Index (EVI) and Land Surface
Water Index (LSWI) were calculated for every 8-day observation
using Eqgs. (1) and (2).

PNIR; — Pred
PNIR; +6 X Preg — 7.5 X Ppiye + 1

EVI=2.5 x (1)

LSWI — PNIR; — PSWIR,
PNIR; T+ PSWIR,

(2)

where Onir,, Ored> Obiues aDd pswir, are the MODO9A1 sur-
face reflectance for NIR; (841-876 nm), red (620-670 nm), blue
(459-479nm), and SWIR; (1628-1652 nm), respectively. A two-
step gap-filling procedure was applied to gap-fill bad-quality
observations within the time series of vegetation indices (Xiao et al.,
2004a,b).

2.3. In-situ meteorological observations and CO; flux data

The AmeriFlux network consists of eddy covariance flux sites
for monitoring the long-term ecosystem-scale exchange of car-
bon, energy, and water in North America (Baldocchi et al., 2001).
Meteorological observations such as temperature, precipitation,
and radiation are also collected at these sites.

We obtained all available 8-day Level 4 data of the AmeriFlux
sites covering the conterminous U.S. from http://ameriflux.lbl.gov/
Pages/default.aspx (Fig. 1). The Level 4 data included air temper-
ature (Tgc), downward shortwave radiation (Rgc), and CO, flux
data. This study used the standardized GPP (GPPgc), which was
partitioned from net ecosystem CO, exchange (NEE). By screening
quality flags, only the most reliable observations were chosen for
analysis. Tgc and Rgc from 37 non-crop sites (139 site-years) were
used to evaluate and to adjust the NARR, if there were large biases. A
total of 23 site-years of Tgc and Rgc and 40 site-years of GPPgc from
seven crop sites were used to validate the adjusted NARR and to
evaluate the VPM-simulated GPP, respectively (Table 1). The crop
sites were located in the Midwest U.S. corn and soybean belt, and
were under different agricultural management practices. US-NE1
was a continuous irrigated maize site and US-NE2 was an irri-
gated maize/soybean rotation site. The other five sites were rainfed
maize/soybean rotation sites. The detailed descriptions about these
sites can be found in site specific publications (Griffis et al., 2005;
Meyers and Hollinger, 2004; Verma et al., 2005).

It is important to mention that a direct comparison between
the in-situ AmeriFlux observations and the NARR data without
considering the differences of spatial scales might introduce some
uncertainties. The in-situ observations can be affected by local envi-
ronment conditions (terrain, hydrology, land cover etc.), while the
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