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a b s t r a c t

The benefit of an antitrapping current has been investigated for a multicomponent multiphase-field
model based on a double obstacle potential [Eiken et al., Phys. Rev. E 73 (2006) 066122]. Arguments
justifying the analytical form of this correction for artificial solute trapping are given using Kim's
formalism [Kim, Acta Mat. 55 (2007) 4391]. The validity of the model has been tested by comparing the
phase-field results with those obtained by a sharp interface model. In particular, the 1D steady state
solutions for solidification of a binary Al–Si and a ternary Al–Si–Mg alloy under isothermal conditions
with a constant solute concentration at a finite distance from the solidification front have been used for
comparison. The front velocity, the liquid concentration profile, and the concentration in solid predicted
by the phase-field model with antitrapping compare well with the sharp interface solutions. In addition,
for dendritic growth the convergence of tip velocity and local solute concentration at the tip with
decreasing interface thickness is demonstrated.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The key problem for the simulation of the microstructure
evolution during phase transformation is a correct and effective
description of the movement of the phase boundaries. In alloy
solidification a moving phase boundary is in general associated
with the redistribution of alloying elements. When assuming a
sharp interface between the phases, the solute concentration
profile is discontinuous over the interface and the concentration
ratio for the local concentrations at both sides is given by the
segregation coefficients. At low and moderate interface velocities
the value of the segregation coefficient is given by the local
thermodynamic equilibrium condition, for the absolute concen-
trations the interfacial curvature effect has to be considered. Thus,
the solution of a sharp interface model requires an explicit
tracking of the interface with local triangulation for curvature
calculations. The phase-field approach avoids the issue of expli-
citly tracking the interface by introducing a diffuse interface
description described by an order parameter which varies
smoothly but steeply over the interface on the length scale η.
Phase-field models can be derived from a sound thermodynamic
basis which naturally leads to a diffuse interface on an atomistic
scale [1].

In this paper we will follow the spirit of applied phase-field
modelling when the diffuse interface is considered rather as a

convenient numerical vehicle to solve the free boundary problem
than being a real physical property. In order to achieve accessible
computation times, η is often selected as much larger than a
physical interface width in the order of the finest microstructural
details to be resolved in the simulation. However, the numerical
solution should be independent of the choice of the interface
thickness and must still reproduce the sharp interface results with
a reasonable accuracy. A rigorous analysis of the sharp interface
limit η-0 requires η to be much smaller than the capillarity length
of the particular system. For a numerical solution of the phase-
field equation this requirement on the spatial resolution can only
be met for 1D problems or by extreme high performance comput-
ing [2]. The increase of the interface thickness η causes several
artifacts leading to η depending phase-field simulation results.
How severe this dependency shows up, depends on the particular
simulation scenario, e.g. in the case of equiaxed solidification in
casting the simulation of the initial growth, starting from nuclea-
tion until soft impingement is more prone to diffuse interface
artifacts than the later stages. At higher solid fractions the
diffusion fields become flat and the numerical requirements
regarding η are less severe.

In order to relax the restrictions on the spatial resolution for
quantitative phase-field simulations Karma and Rappel [3] intro-
duced a thin interface analysis. In the first papers the thin interface
asymptotic expansion has been developed for a thermal phase-
field model with equal thermal conductivities on both sides
(symmetric model) or no diffusion in the solid (one sided model).
The thin interface limit leads to a correction of the interface
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mobility based on an analysis of the temperature variation across
the interface and thus corrects the local dependency of the driving
force over the diffuse interface. Additional artifacts have been
reviewed by Almgren [4]. For a solutal phase-field model the
diffuse interface induces artificial solute trapping and modifies the
mass conservation condition at the interface. Karma and Echebar-
ria et al. [5,6] showed that these artifacts can be reduced by
introducing an antitrapping term into the diffusion equation
which compensates for the interfacial anomalies. A generalization
of this latter approach has been proposed by Ohno and Matsuura
[7,8] and by Pan and Zhu [9] in the case of an arbitrary solid
diffusivity. More recently the phenomenological antitrapping
model was also derived thermodynamically consistent for a
variational phase field formulation [10] and also investigated in a
more general context of basic principles of irreversible thermo-
dynamics [11].

This work addresses the formulation of an antitrapping current
suited for a multicomponent phase-field model based on a double
obstacle potential [12]. A derivation of the antitrapping current
will be given following the argumentation of Kim [13], the
analytical results are consistent with the work of Choudhury and
Nestler [14] based on a grand-potential formulation. However,
unlike [14] the convergence of this ATC model to the sharp
interface solution will be demonstrated by comparing it with the
solutions of the sharp interface model. To that purpose the
isothermal solidification of a binary Al1Si alloy and the ternary
case for an Al1Si1Mg alloy including cross-diffusion effects has
been considered.

The present paper is organized as follows. In Section 2 the
double-obstacle phase-field ansatz for which we derived the
antitrapping correction is presented, then in Section 3 analytical
justifications are given for the antitrapping correction. Finally,
comparisons of the model with one-dimensional numerical solu-
tions of the sharp interface formulation and 2D simulations of
dendritic growth are shown in Section 4.

2. Model

2.1. Free energy functional

From a numerical point of view, the phase-field approach
replaces the explicit description of a sharp boundary which
separates two adjacent phases or grains by a discontinuous jump
of properties, e.g. from the solid to the liquid state, by a continuous
order parameter function ϕαð x!; tÞ whose scalar field gives the
local phase or grain fraction at the position x! at the time t.
ϕαð x!; tÞ varies continuously over the interface, e.g. from 0 to 1, on
a length scale η and the position of an equivalent sharp interface is
defined by the ϕð x!Þ¼ 0:5 contour. Following the multiphase-field
ansatz originating from [15], the phase-field parameter ϕα repre-
sents the local molar fraction of a phase α. For a dual interface
between phases α and β ϕα þ ϕβ ¼ 1 holds. The local concentration
of an element i, cið x!; tÞ, is given through the mixture rule [16]:

cið x!; tÞ ¼∑
α
ciαð x!; tÞϕαð x!; tÞ ð1Þ

Using the above definitions one can express the free energy
density f of the system by the sum over different contributions,
namely: the interfacial contribution f intf ðfϕαgÞ, and the chemical
free energy density f chemðfϕαg; f c!αgÞ, f ¼ f intf þ f chem. The chemical
free energy is assumed to follow also a mixture rule:

f chemðfϕαg; f c!αgÞ ¼∑
α
hpðϕαÞf αð c!αÞ ð2Þ

where f α is the bulk free energy density of phase α, and hpðϕÞ is a
monotonic interpolation function fulfilling h(0)¼0 and h(1)¼1. In

the present model, c! denotes the n-tupel of concentrations of all
n elements of the alloy, which can be reduced to ðn−1Þ by applying
mass conservation.

The interfacial contribution to the free energy density is given
by a combination of potential and gradient energy contributions as
follows:

f intf ¼ ∑
ν

α;β4α
Wαβgαβðϕα;ϕβÞ−

ϵ2αβ
2

∇xϕα∇xϕβ

" #
: ð3Þ

In this paper, the function gαβðϕα;ϕβÞ ¼ ϕαϕβ (for 0≤ϕ≤1;∞ other-
wise) is a symmetric function (“double obstacle”) having a para-
bolic shape whose amplitude is scaled by Wαβ . The quantities Wαβ

and ϵαβ can be identified with the interfacial energy sαβ by
integrating both parts of Eq. (3) over the interface from ϕ¼ 0 to
ϕ¼ 1. This leads to the relations Wαβ ¼ 4sαβ=η and ϵαβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
8ηsαβ

p
=π,

see [12].

2.2. Multiphase-field model

The temporal evolution of the order parameter ϕ, i.e. the phase-
field equation, is derived from a relaxation approach for non-
conserved order parameters, based on the free energy F ¼ RΩf dΩ:

∂ϕα

∂t
¼ − ∑

ν

β≠α
μn

αβ

δF
δϕα

−
δF
δϕβ

 !
; ð4Þ

δF=δϕ being the functional derivative of the free energy and μn
αβ the

phase-field interface mobility. Using the analytical expression of
Eqs. (2,3) for the energy densities, Eq. (4) can then be further
expanded:

∂ϕα

∂t
¼ ∑

ν

β≠α
μn

αβ h′pΔGαβ−sαβKαβ þ ∑
γ≠β≠α

Jαβγ

" #
ð5Þ

where ΔGαβ represents the thermodynamic driving force:

ΔGαβ ¼ f βð c!βÞ−f αð c!αÞ− ∑
n−1

i ¼ 1
~μ iðciβ−ciαÞ ð6Þ

weighted by hp'. In the present formulation this weighting func-
tion has been defined hp;αβ ′¼ π

η ðϕα þ ϕβÞ
ffiffiffiffiffiffiffiffiffiffiffi
ϕαϕβ

p
in order to con-

centrate the thermodynamic force to the center of the interface.
The terms ~μ iðciβ−ciαÞ are derived from a Lagrange term
∑n−1

i ¼ 1ðci−∑ν
α ¼ 1hdðϕαÞciαÞμi added to Eq. (2) to ensure the local mass

balance. In the following analysis, the driving force is approxi-
mated by means of a linearized phase diagram centered at the
melting temperature of the matrix component Tm:

ΔGαβ ¼ΔSαβ Tm−T þ∑
i
ml

i;αβciα

 !
ð7Þ

with the liquidus slope ml
i;αβo0, ΔSαβ is the entropy of transfor-

mation per volume. The pairwise curvature contributions to the
interfacial curvature contribution are

Kαβ ¼
π2

2η2
ðϕβ−ϕαÞ þ

1
2
ð∇2

xϕβ−∇
2
xϕαÞ ð8Þ

and the third-order junction forces

Jαβγ ¼
1
2
ðsβγ−sαγÞ

π2ϕγ

η2
þ ∇2

xϕγ

 !
ð9Þ

For a dual interface with ϕβ ¼ 1−ϕα the phase-field equation in the
present notation reads like

∂ϕα

∂t
¼ μn

αβ

π

η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕαð1−ϕαÞ

p
ΔGαβ

�

−sαβ
π2

2η2
ð1−2ϕαÞ−∇2

xϕα

� ��
ð10Þ
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