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A B S T R A C T

In this paper we propose an extension to the Handrich model considering the fluctuations in exchange energies
between ions located in different magnetic sublattices. Thus, each magnetic sublattice has an amorphization
parameter that changes with temperature. A systematic study of the magnetization as a function of temperature
is performed, which allows to observe significant differences when such fluctuations are not considered.

1. Introduction

Magnetic amorphous alloys are very interesting systems. Usually
they are part of a class of soft magnetic materials with attractive
magnetic and mechanical properties. We can highlight some of them:
large critical shear stress [1], high corrosion resistance [2], low eddy
current loss resulting from a large electrical resistivity, negligible
magnetic hysteresis (desirable for minimizing longitudinal thermal
conduction) [3], and others. There are many magnetic applications for
amorphous alloys, from the use of small micro-sensors such as large
electrical power devices [4]. In addition, with a number of new tech-
nologies emerging, the nature and the scope of the existing applications
are changing rapidly. One of these promising technologies is magnetic
refrigeration. Theoretical and experimental investigations on the ap-
plication of amorphous alloys in this type of refrigeration has grown
considerably in recent years.

Amorphous systems have collinear and non-collinear magnetic
structures. In the case of collinear, is observed the ferromagnetic con-
figuration for amorphous alloys for many materials as, e.g., −Gd x1 M
alloys with M=Ag, Au, Al or Cu and transition-metal–metalloid alloys
like −TM Mx x1 with TM=Fe, Co or Ni and M=B, P or C [5]. The col-
linear ferrimagnetic is observed, such as, for −Gd Tx x1 alloys with T=Fe,
Co or Ni [6] and thus represents a two sublattices configuration con-
taining two distinguishable groups of atoms.

Many amorphous alloys have the magnetic matrices and their mo-
ments very similar to the related crystalline compounds, suggesting
similar local environments. Indeed, Corb and coworkers [7] presented a
quite successful model of local order and magnetism in amorphous al-
loys that describes well the moment variation with metalloid content in
several alloys based on Co, Ni, and Fe by supposing a local coordination
in the amorphous phase like that in a related crystalline compound.

Amorphous materials have no long-range order (periodicity) like
crystals. By the way, amorphous ferromagnets have the magnetic mo-
ments oriented in a specific direction, but the spatial distribution of
these is not regular. In order to describe the behavior of ferromagnets
with this irregularity, Handrich and Kaneyoshi proposed a simple
model whithin a mean field theory which a localized spin interacts with
your neighbors, but fluctuations in exchange energies are present [8].
These fluctuations are characterized by a parameter (δ) which modifies
the Brillouin function turning possible to fit experimental data with
good agreement. Many works were reported using this model to de-
scribe some amorphous ferromagnets properties like magnetic, caloric
and so on [9–11]. However, in some cases, the model fail to describe
the magnetization behavior. Therefore, Bhatnagar et. al. proposed an
empiric expression for δ in order to fit the experimental data con-
sidering the temperature dependence [12]. The new parameter was

= −δ δ t(1 )0
2 with =t T T/ C and TC the Curie temperature. Later, Galla-

gher and coworkers proposed an extension to the Handrich’s model
introducing an asymmetrical distribution of the exchange interactions
based on empirical knowledge of the Bethe-Slater curve [13]. The
fluctuations suggested by Gallagher and coworkers was defined like

= + −± ± ±δ δ δ t(1 )0 1
2 to consider the influence of temperature.

In this paper, we suggest a theoretical model to reach the depen-
dence of temperature on exchange energies fluctuations of ferrimag-
netic systems with two magnetic sublattices based on a mean field
theory. An expression for delta is obtained allowing a systematic study
about the behavior of the magnetization as well as δ for differents va-
lues of molecular fields.

2. Theory

We start this section writing the local field on a i-th ion as
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The first term is the external magnetic field whereas the second and
third terms are the exchange interaction between spins Sj on common
sublattice (a) and exchange between Sk spins on different subllatice (b),
respectively. Due to structural disorder, the exchange energies Jmn can
be replaced by

= 〈 〉 +J J JΔmn mn mn (2)

The symbol 〈…〉 represents the random average over all possible
configurations and JΔ mn characterizes the fluctuations of exchange en-
ergies due to non-uniforme distribution of the ions. In addition, we
define the quantities according to [8]
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γ – i. e. it’s independent of random

average, the Eq. (1) can be replaced on Eqs. (3) and (4), providing (for
=H 0)
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where the index b was dropped and we’ll consider only the sublattice a
without loss of generality. The reduced magnetization can be reached
by performing the random average of all magnetic moments
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BS is the Brillouin function, =β k T
1
B

and we take, for convenience,
=gμ 1B in the argument (k g,B and μB are, respectively, Boltzmann

constant, Landè factor and Bohr magneton). Applying the Handrich-
Kaneyoshi approximation [8]
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Considering the fluctuations JΔ ij and JΔ ik independents, i.e.,
〈 〉 = 〈 〉〈 〉J J J JΔ Δ Δ Δij ik ij ik , we obtain 〈 〉 =J( Δ 0)nm
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The equation above shows that the amorphization parameter δa is
temperature dependent through the magnetizations σa and σb. With a
bit of algebra, we can rewrite the Eq. (11) as
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Finally, one can note that the amorphization parameter obtained for
each lattice is characterized by both energies fluctuations between ions
localized in a common lattice δ( )0 and different lattice δ( )1 .
Furthermore, the parameter is temperature-dependent through the
magnetization of each lattice (it is important to highlight that if the
second lattice does not exist we recovery the parameter defined by
Handrich). Combining Eqs. (8) and (9), we obtain

∑= + =
= −

σ B x lδ T x βS W1
2

[ (1 ( ))];a

l
S a

a
a

a a

1, 1
0

(14)

3. Application

Now we investigate the magnetization of ferrimagnetic amorphous
systems taking into account the parameter δ T( ). From Eq. (14) the total
magnetization can be written as
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where for each lattice γ J, is the total angular momentum, N the
number of magnetic ions, g the Landè factor and = 〈 〉x gμ Jβ hB .

For convenience, the system consists of two lattices with identical
ions, i.e., = =J Ja b

5
2 and = =g g 2a b . The ferrimagnetic state is ob-

tained by considering that a lattice has =p 2
3 of the magnetic ions while

the other has − =p(1 ) 1
3 . Using the mean field approximation, field 〈 〉hγ

can be written as = +h η M η Ma b aa bb a b ab ba b a( ) ( ) ( ) ( ) ( ). Here, the η’s para-
meters represent the renormalized exchange interactions as defined in
[9]. Fig. 1 shows the magnetization profiles for differents η. The choice
of the η parameters defines the values for the compensation and mag-
netic ordering temperature. It is based on the experimental values of
these quantities usually observed in ferrimagnetic amorphous alloys
[14]. In all situations, we consider = = −η η 100ab ba T

mev

2
.

Usually, in amorphous ferromagnets, the magnetization vs. tem-
perature curve exhibits a pronounced “depression” when compared to

Fig. 1. Magnetization profiles for different combinations of renormalized ex-

change parameters: solid = =( )η η300 and 0.001aa T
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2 2
; dashed
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; dotted = =( )η η10 and 300aa T
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2 2
; dash-

dotted = =( )η η0.001 and 400aa T
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2 2
. In all cases, = = −η η 100ab ba T

mev

2
.
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