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A B S T R A C T

In this paper we study the spin- and charge-transport behaviors of a single molecular magnet (SMM) coupled to
external reservoirs with spin-dependent chemical potentials. By using the Hubbard operator Green’s function
method, we show that in the limit of a pinned macrospin the SMM can serve as an effective spin current filter or
generator. Two configurations of spin bias are considered. For SMM coupled with symmetric dipolar spin bias,
the system can generate spin-polarized current and pure spin current by adjusting the relative magnitude of spin
bias and Coulomb interaction. It originates from the competition of two spin-opposite transport channels. Also
due to this competition, one can observe a negative differential spin conductance. For SMM coupled with
asymmetric dipolar spin bias, the system can only generate spin-polarized currents. The SMM as a spin current
generator shows features different from the usual quantum dot system and these features can be useful in
molecular spintronics.

1. Introduction

To generate and manipulate a highly spin-polarized current is an
essential task in both spintronics and quantum information [1,2]. The
quantum dot (QD) tunnel junctions have been proved to be good can-
didates for obtaining a spin-polarized current. By coupled with external
magnetic electrodes, spin bias, spin-orbit coupling, external magnetic
field, or polarized light, many fascinating theoretical and experimental
results have been reported [3–7]. For example, it was pointed out [4]
theoretically that the interplay of Coulomb correlations on the dot and
spin polarization of the leads significantly enhances spin precession and
leads to negative differential conductance.

On the other hand, with the development of materials science, the
single molecular magnet (SMM) has been shown to be another suitable
candidate for future molecule-based spintronic devices [8–13]. For in-
stance, it was reported that spin polarized current can induce Magnetic
switching of SMM [8] and at low temperatures the interplay of the
Kondo effect and spin-polarized transport can leads to suppression of
the Kondo effect [12], which also leads to a nontrivial behavior of
tunnel magnetoresistance [13]. Interesting enough, owing to the uni-
axial anisotropy induced energy barrier, at low temperatures, the SMM
can be trapped in one of the two lowest magnetic states ± 〉S| and only
electrons with spin parallel to the local large spin’s magnetization can
flow through the SMM and generate 100% spin-polarized current
[14–16]. Due to this spin selection property, SMM seems to be a very

appropriate candidate for designing spin injector or spin-related heat-
electricity conversion devices.

Motivated by these achievements, and to explore new materials to
generate and manipulate spin-related currents, in this paper we con-
sider a molecule-based spin current generator, which consists of a SMM
connected with an external either symmetric or asymmetric dipolar
spin bias [17]. The spin bias can inject spin-polarized currents into
SMM. In the mean time, following Refs. [15,16], we simplify the SMM
as a two-channel model possessing spin-opposite configuration. The
interplay of spin bias and SMM’s spin-opposite configuration induces
interesting current behaviors. With SMM coupled to symmetric dipolar
spin bias, we find that by adjusting the relative magnitude of spin bias
and Coulomb interaction, the system can generate 100% spin-polarized
current or pure spin current, which originates from a competition be-
tween two spin-opposite transport channels. Also due to this competi-
tion, we find a negative differential spin conductance at the transition
point. Here the spin polarization of the current = − +↑ ↓ ↑ ↓p I I I I( )/( ) can
reach 100% or infinite. The 100% polarized spin means that there is only
one spin component current that can flow through the system ( =↑I 0 or

=↓I 0). Whereas infinite spin polarization implicates the achievement
of a pure spin current ( + =↑ ↓I I 0, while − ≠↑ ↓I I 0). With SMM coupled
to asymmetric dipolar spin bias, one can observe only spin-polarized
current. It is a feature to distinguish SMM connected with symmetric
dipolar spin bias from asymmetric dipolar spin bias.

The paper is organized as follows. In Section 2 we describe the
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model of SMM placed between two leads with symmetric or asymmetric
dipolar spin bias. We also describe there the method used in this paper:
the Hubbard operator Green’s function method. Basic formulas in this
Hubbard operator representation are presented. In Section 3 we present
the numerical study of spin- and charge-transport behaviors of SMM
coupled with two configurations of spin bias. Finally, Section 4 is de-
voted to a brief conclusion.

2. Model and method

Our system is shown in Fig. 1. The whole system is composed of a
SMM connected with spin bias and described by the Hamiltonian as
follows [18–21]:
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where the SMM is modeled as a molecular orbital level (OL) exchange
coupled to a local large spin S, and the total spin operator is

= +S s Stot . ε0 is the energy of OL, d d( )σ σ
† is the electron creation (an-

nihilation) operator in the OL, with = ↑ ↓σ , representing the up and
down electron spins, U denotes the Coulomb interaction strength, J is
the exchange coupling strength between the electron spin s on the OL
and the local spin S, and K is an uniaxial anisotropy parameter. This
anisotropy term induces an energy barrier which is crucial for our
following discussion. c c( )kασ kασ

† is the electronic creation (annihilation)
operator with momentum k, spin σ , and energy εkαs in the electrodes

=α L R, . The OL is tunnel coupled with electrodes and tkα describes the
tunneling amplitude between SMM and leads.

To calculate the current flowing through the system, we use Keldysh
non-equilibrium Green’s function formalism, a widely used method in
the discussion of electronic transport [22–25]. The spin-polarized cur-
rent is expressed as
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For simplicity, in this paper we consider the case of symmetric coupling
= = = π t ρΓ Γ Γ 2 | |L R

2 , where ρthe constant density of states for the
square wide band approximation. In Eq. (2)

= − + −f ω ω μ k T( ) {exp[( )/ ] 1}ασ ασ B
1 stands for the Fermi distribution

function, with =α L R, . Noticing that spin bias means difference be-
tween the spin-up and spin-down chemical potentials and it can be
considered in the chemical potential μασ . = 〈〈 〉〉G ω d d( ) |σ

r
σ σ

r† is the on-
site retarded Green’s function. Accordingly, the charge current is de-
fined as = +↑ ↓I I Ic , and the spin current is defined as = −↑ ↓I I Is [15].

The next step is to calculate the Green’s function G ω( )σ
r . We solve it

by the equation of motion (EOM) technique. Before calculation we
would like to point out that SMM is a special system involved with a
local large spin with ⩾S 10 usually, and this large spin is not expressed
as second quantization notation (see the model Hamiltonian in Eq. (1)).
Thus it fails the usual second quantization EOM technique. Here, fol-
lowing our previous work [26–32], we use the EOM technique

combined with Hubbard operators [33]. The completeness basis of the
OL is 〉 ↑〉 ↓〉 〉{|0 , | , | , |2 }and the electron operators in the OL are rewritten
as = +d X δ Xσ

σ
σ

σ0 2, with = + −δ 1( 1)σ for = ↑ ↓σ ( ) and = −σ σ ; the
electron spin operators are written as = − =↑↑ ↓↓ + ↑↓s X X s X( )/2,z and

=− ↓↑s X , where = 〉〈X i j| |ij are defined in terms of electron basis states
〉i| 〉j(| )( = ↑ ↓i j, 0, , , 2) of the OL. The local large spin operators are
expressed as = ==−
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number, where = 〉〈Y Sm Sn| |m n, , and = ± + ∓±C S m S m( 1)( )m .
Hence in this representation the total Hamiltonian of Eq. (1) is re-
written as
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In the same way, the retarded Green’s Function is written as
= 〈〈 〉〉 + 〈〈 〉〉=− =−G ω X Y d δ X Y d( ) Σ | Σ |σ

r
m S
S σ mm

σ
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m S
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σ
r0 † 2 † . Before cal-

culating these Hubbard operator Green’s Functions, following Refs.
[15,16], we introduce a large spin approximation to simplify our pro-
blem. Owing to the anisotropy-induced energy barrier (KS2) of SMM, at
low temperatures, the local large spin can be trapped in one of the two
lowest bistable magnetic states with ⩾m 0 prepared originally. The
electron occupation on the OL of solo SMM could be =n 0, 1, or 2
electrons. For =n 1, when the local large spin is trapped in 〉S| state, due
to exchange coupling, only spin-up electron can occupy the OL; when
one more electron tunnels into the OL ( =n 2), it can only be a spin-
down electron. Hence, under this approximation the completeness basis
of the OL simplifies to 〉 ↑〉 〉{|0 , | , |2 }and the total Hamiltonian reads now
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Accordingly, one needs to calculate the retarded Green’s Functions
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and in the same way 〈〈 − 〉〉↑
↓X Y d( ) |SS r2 † is obtained as
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Here in Eqs. (5) and (6) the average values 〈 〉↑↑X Y SS and 〈 〉X Y SS22 can be
obtained as follows [7,34,35]

Fig. 1. Schematic depiction of the model under consideration. It consists of a
SMM coupled to external either (a) symmetric dipolar spin bias or (b) asym-
metric dipolar spin bias. The SMM’s orbital level (OL) is exchanged coupled to a
local large spin (see Hamiltonian in the text).
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