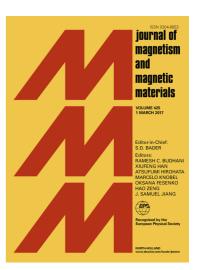
Accepted Manuscript

Effect of Heavy Metal Interface on the Magnetic Behaviour and Thermal Stability of CoFeB Film

Jagrati Dwivedi, Mukul Gupta, VR Reddy, Ashutosh Mishra, V. Srihari, K.K. Pandey, Ajay Gupta


PII: S0304-8853(18)30344-5

DOI: https://doi.org/10.1016/j.jmmm.2018.06.086

Reference: MAGMA 64106

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 6 February 2018
Revised Date: 6 June 2018
Accepted Date: 30 June 2018

Please cite this article as: J. Dwivedi, M. Gupta, V. Reddy, A. Mishra, V. Srihari, K.K. Pandey, A. Gupta, Effect of Heavy Metal Interface on the Magnetic Behaviour and Thermal Stability of CoFeB Film, *Journal of Magnetism and Magnetic Materials* (2018), doi: https://doi.org/10.1016/j.jmmm.2018.06.086

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of Heavy Metal Interface on the Magnetic Behaviour and Thermal Stability of CoFeB Film

Jagrati Dwivedi¹, Mukul Gupta², V R Reddy², Ashutosh Mishra¹, V. Srihari³, K. K. Pandey³ and Ajay Gupta^{4*}

¹School of Physics, Devi Ahilya University, Khandwa Road, Indore, MP-452001, India ²UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, MP-452001, India

³High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, MH-400085, India

⁴Amity Center for Spintronic Materials, Amity University, Sector 125, Noida, UP- 201 313, India

*Email: agupta2@amity.edu

Abstract: Evolution of the structure and magnetic properties of an amorphous CoFeB layer in a heterostructure consisting of HM/ CoFeB/ HM (HM=Hf, W), with thermal annealing has been studied using magneto-optical Kerr effect (MOKE) and synchrotron based Grazing incidence x-ray diffraction (GIXRD) measurements. It is found that the interface with HM can significantly affect the thermal stability as well as magnetic properties of CoFeB layer. Crystallization temperature of CoFeB layer interfaced with Hf is about 50°C lower than that of CoFeB interfaced with W. Further, while in Hf/CoFeB/Hf, the as-deposited film possesses a well-defined uniaxial magnetic anisotropy, in W/CoFeB/W the magnetization is almost isotropic in the film plane. Long range stresses in as-deposited film and possible bond orientational order are expected to cause the observed anisotropy. With onset of crystallization, random stresses and compositional inhomogenities are generated in CoFeB film, resulting in a large increase in magnetic coercivity, and disappearance of magnetic anisotropy.

Keywords: Amorphous thin film, Capping/buffer layer, Magneto optical Kerr effect, Magnetic anisotropy, X-ray diffraction.

1. INTRODUCTION

Heterostructures consisting of Heavy Metal (HM)/CoFeB/MgO are important in view of the possibility of having magnetic tunnel junctions with voltage induced switching of

Download English Version:

https://daneshyari.com/en/article/8152648

Download Persian Version:

https://daneshyari.com/article/8152648

<u>Daneshyari.com</u>