Accepted Manuscript

Biomedical nanoparticle carriers with combined thermal and magnetic response: current preclinical investigations

Marli Luiza Tebaldi, Caroline M.R. Oda, Liziane O.F. Monteiro, André L.B. de Barros, Carla Junia Santos, Daniel Cristian Ferreira Soares

PII:	\$0304-8853(18)30077-5
DOI:	https://doi.org/10.1016/j.jmmm.2018.04.032
Reference:	MAGMA 63878
To appear in:	Journal of Magnetism and Magnetic Materials
Received Date:	9 January 2018
Revised Date:	14 April 2018
Accepted Date:	15 April 2018

Please cite this article as: M.L. Tebaldi, C.M.R. Oda, L.O.F. Monteiro, A.L.B. de Barros, C.J. Santos, D.C.F. Soares, Biomedical nanoparticle carriers with combined thermal and magnetic response: current preclinical investigations, *Journal of Magnetism and Magnetic Materials* (2018), doi: https://doi.org/10.1016/j.jmmm.2018.04.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Biomedical nanoparticle carriers with combined thermal and magnetic response: current preclinical investigations

Marli Luiza Tebaldi¹, Caroline M. R. Oda¹, Liziane O. F. Monteiro¹, André L.B. de Barros², Carla Junia Santos¹ and Daniel Cristian Ferreira Soares^{1*}

¹Universidade Federal de Itajubá, Campus Itabira, Itabira, Minas Gerais, Brazil. ²Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. ³Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

* Corresponding author:

soares@unifei.edu.br; +55-31-3840-0925

Abstract

Nanocarriers combining two or more different approaches in the same particle has been a new trend in research worldwide. Among the strategies studied, magnetic nanoparticles with dual properties related to drug delivery and diagnostic imaging represent a significant improvement in the response of chemotherapy and in a real-time monitoring of drug distribution. Nanocarriers combining dual properties such as thermal and magnetic, enable controlling the release and modulate a treatment giving more specificity of action. This is possible since a magnetic external field can allow the adequate movement of nanoparticles and provide a means to remotely heating the target tissue safely. The temperature increase can trigger changes in the structure of nanocarriers leading to the release of drugs. This field of Download English Version:

https://daneshyari.com/en/article/8152833

Download Persian Version:

https://daneshyari.com/article/8152833

Daneshyari.com