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The magnetic properties (phase diagrams and magnetizations) of an Ising bilayer film with non-magnetic
inter-layers are investigated by the use of the effective field theory with correlations. The system is
consisted of two magnetic layers where upper and lower layers are respectively consisted from spin-
1/2 atoms and spin-1 atoms with a single-ion anisotropy D;. The value of D; is randomly distributed by
a bimodal distribution function. The possibility of multi-compensation points and the reentrant
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1. Introduction

In the previous works [1-3], we have investigated the magnetic
properties (phase diagram and magnetizations) of various bilayer
Ising films on graphene-like honeycomb lattice with nonmagnetic
inter-layers. The aim of this work is, by the use of the same
formulation as that in the previous works, to investigate the effects
of random single-ion anisotropy on the magnetic properties in the
same system as that of [3], which is consisted of spin-1/2 upper
layer and spin-1 lower layer with a single-ion anisotropy D; at each
site. In this work, however, the single-ion anisotropy D; is ran-
domly distributed according to the bimodal distribution function,
instead of D; = D (constant value) in the previous work.

The spin-1 Ising model with a single-ion anisotropy and its vari-
ants have been used to simulate many physical systems, in order to
clarify the first-order phase transition in various magnetic systems.
The model is often called as the Blume-Capel (BC) model. The spin-
1 Ising model with a random single-ion anisotropy and its variants
have also been examined for long time by using a variety of
theoretical techniques. In these systems, there exists a tricritical
point at which the second-order phase transition may change to
the first-order phase transition, when the value of single-ion aniso-
tropy takes a large negative value. In general, the value (- Drand Dt
> 0.0) of tricritical point in the BC model is given by Dr/z ] = 0.47,
where z is the coordination number and | is the nearest-neighbor
exchange interaction (J > 0.0) in the system. As discussed in the
previous work [3], we have shown that the bilayer Ising film with
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nonmagnetic inter-layers exhibit the tricritical point, when the
exchange interaction in the spin-1 (lower) layer is larger than that
in the spin-1/2 (upper) layer. As far as we know, what phenomena
are obtained in the bilayer Ising film with non-magnetic interlay-
ers has not been investigated theoretically, when the value of D;
is randomly distributed by a bimodal distribution function. For
recent development of theoretical research in a variety of systems
with a random single-ion anisotropy, one can consult the refer-
ences in [4].

In Section 2, the model and formulation are briefly given within
the theoretical framework of the effective-field theory with
correlations (EFT). In section 3, the phase diagrams are obtained
and discussed. In section 4, the temperature dependences of magne-
tizations are obtained. The possibility of multi-compensation points
and the reentrant phenomena have been obtained. The last section is
devoted to conclusion.

2. Model and formulation

We consider the system consisting of two graphene-like honey-
comb lattices with n non-magnetic inter-layers, as depicted in
Fig. 1. The white and black circles represent respectively the mag-
netic atoms with spin-1/2 and the magnetic atoms with spin-1 and
a crystal field D;, The spins (white and black circles) are coupled by
the nearest-neighbor exchange interactions J, and Jg (Ja > 0.0 and
Jg > 0.0). In Fig. 1, each Ising spin on upper layer is coupled to the
corresponding spin on the lower layer with an indirect exchange
interaction - Jg (Jr > 0.0). The Hamiltonian of Fig. 1 is given by
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Fig. 1. Schematic representation of a bilayer Ising film on graphene-like honey-
comb lattices, which are consisted of spin-1/2 (white circle) and spin-1 (black
circle) atoms with a randomly distributed single-ion anisotropy. They are coupled
by the nearest-neighbor exchange interactions J (in the upper layer) and Jg (in the
lower layer). There exist n non-magnetic layers between the two layers. Each Ising
spin on upper layer is coupled to the corresponding spin on the lower layer with an
indirect exchange interaction - Jg (Jr > 0.0).

H= LY ofo! Y ShS + 1 o%sh - 30w (S2)'. ()
(ij) (mn) (im) (m)

where o represents the spin-1/2 operator with o7 =+1/2 and Sf is
the spin-1 operator with S% =1 and 0. The first and the second
terms in (1) represent the contributions from the intra-layer inter-
actions. The indirect exchange interaction J is given by

Jr/) = exp(=A(n+1))/(n +1)’, (2)

when the non-magnetic layers between the two layers are arranged
by the equal distance a. ] is the direct exchange interaction between
two magnetic layers, when they are coupled directly. The crystal
field Dy, is randomly distributed according to the bimodal distribu-
tion function P(D,), namely

P(Dpn) = [0(Dm — D(1.0 + h)) + 8(Dy, — D(1.0 — h))]/2.0 3)

In general, the parameter § in (2) depends on the dimensional-
ity of the system. From recent discussions on magnetic graphene
systems, it is assumed that the value of § is larger than the value
of dimensionality of the system. The magnetic properties in gra-
phene systems have been often discussed by the use of the indirect
exchange interaction in which the distance-dependent oscillation
can be neglected [1-3]. In the following discussions, accordingly,
let us take the value of § as 6 = 3.0. In (2), furthermore, we have
assumed the following facts; When n = 0.0, it represents the fact
that the two magnetic layers are coupled by the direct exchange
interaction - J. Otherwise, it represents the indirect exchange
interaction between the two layers. From this procedure, we can
compare the differences of results between n=0.0 and n # 0.0
cases systematically, as discussed in [1-3].

The total magnetization (mr=m¥%) per site in the system is
defined as

mr = [mM, + ms]/2.0, 4)

where ma = m4 = <6%> and mg = mj = <<S%,>>,. <A>, expresses the

random average of D,,. Within the EFT [5,6], the ms and mg in the

system are given by

my = [cos h(A/2.0) + 2.0 my sin h(A/2.0)]” [gz{cos h(R) — 1.0}
+ 1.0 — mg sin h(R)]f(x)|,_o (5)

and

m; = [qz{cos h(B) — 1.0} + 1.0 + mg sin h(B)’ [cos h(R/2.0)
— 2.0 my sin h(R/2.0)]F(x)|,_o
(6)

qs = [qzcos h(B) — 1.0+ 1.0 + mg sin h(B)]’ [cos h(R/2.0)
—2.0m, sin h(R/2.0)]G(X)|,_, (7)
where qg = <<(S%,)*>>,, A=]Jo 0, B=]5 0 and R =]z 0. O = 3/ox is the

differential operator. Here, the functions f (x), F(x) and G (x) are
defined by

f(x) = tan h(px/2.0)/2.0 (8)
F(x) = sin h(px)/[2.0 cos h(px) + exp(—Dp(1.0 + h))] 9

+ sin h(px)/[2.0 cos h(px) + exp(—Dp(1.0 — h))] ®
G(x) = cos h(Bx)/[2.0 cos h(px) + exp(—Dp(1.0 + h))] 10)

+ cos h(Bx)/[2.0 cos h(px) + exp(—Dp(1.0 — h))],

where B = 1.0/kgT. The transition temperature T¢ of the system can
be obtained from the relation

[6.0K; — 1.0][3.0K; — 1.0] — 2.0K3K4 = 0.0, (11)
where the coefficients K, (n = 1-4) are given by
K; = sin h(A/2.0)cos h? (A/2.0)[gg{cos h(R) — 1.0} + ].O]Zf(><)|x:O
K, = sin h(B)cos h(R/2.0)[qz{cos h(B) — 1.0} + 1.0]*F(X)|, o
Ks = cos h’(A/2.0)sin h(R)F(X)|,_,
K4 = sin h(R/2.0)[qg{cos h(B) — 1.0} + 1.0}3F(x)\xzo

(12)

The value of gg in (12) can be given by solving the following
equation

qs = cos h(R/2.0)[qz{cos h(B) — 1.0} + 1.0PG(x)],_,. (13)

In the following sections, the magnetic properties of the system
are examined by solving the relations given in this section numer-
ically. For the aim, let us here introduce the reduced parameters, t,
a,b,randd as

t =kgT/],

a=]Ja/l;

b =Jg/], (14)
r=Jg/J and

d=D/]

Before doing the numerical works, one should notice the follow-
ing facts; When the value of hiin (9) and (10) is given by h = 0.0, the
present formulation given in this section is completely equivalent
to those in the previous work [3]. Accordingly, we can use the
numerical results obtained in the work as the starting and guide
points. Furthermore, when h=1.0, it represents the following
physical result; With the probability of p=1/2, the dilution of
the single-ion anisotropy is done.

3. Phase diagrams

Selecting the system with a=1.0 and b=0.5, just like the
results of Fig. 2 in [3], let us examine the phase diagrams (tc = kg-
Tc/J versus d plot) of the present system. In Fig. 2(A), the effects of h
on the T¢ value are given by taking the values of n=1.0 and 2 = 0.0,
where the dashed curve labeled h = 0.0 is equivalent to the corre-
sponding one in Fig. 2(A) of [3]. When the value of h is larger than
h =1.0, the tc curve (the curve labeled h =3.5 or h =5.0) shows a
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