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a b s t r a c t

The magnetic properties (phase diagrams and magnetizations) of an Ising bilayer film with non-magnetic
inter-layers are investigated by the use of the effective field theory with correlations. The system is
consisted of two magnetic layers where upper and lower layers are respectively consisted from spin-
1/2 atoms and spin-1 atoms with a single-ion anisotropy Di. The value of Di is randomly distributed by
a bimodal distribution function. The possibility of multi-compensation points and the reentrant
phenomena are obtained.

� 2018 Published by Elsevier B.V.

1. Introduction

In the previous works [1–3], we have investigated the magnetic
properties (phase diagram and magnetizations) of various bilayer
Ising films on graphene-like honeycomb lattice with nonmagnetic
inter-layers. The aim of this work is, by the use of the same
formulation as that in the previous works, to investigate the effects
of random single-ion anisotropy on the magnetic properties in the
same system as that of [3], which is consisted of spin-1/2 upper
layer and spin-1 lower layer with a single-ion anisotropy Di at each
site. In this work, however, the single-ion anisotropy Di is ran-
domly distributed according to the bimodal distribution function,
instead of Di = D (constant value) in the previous work.

The spin-1 Ising model with a single-ion anisotropy and its vari-
ants have been used to simulate many physical systems, in order to
clarify the first-order phase transition in various magnetic systems.
The model is often called as the Blume-Capel (BC) model. The spin-
1 Ising model with a random single-ion anisotropy and its variants
have also been examined for long time by using a variety of
theoretical techniques. In these systems, there exists a tricritical
point at which the second-order phase transition may change to
the first-order phase transition, when the value of single-ion aniso-
tropy takes a large negative value. In general, the value (- DT and DT

> 0.0) of tricritical point in the BC model is given by DT/z J = 0.47,
where z is the coordination number and J is the nearest-neighbor
exchange interaction (J > 0.0) in the system. As discussed in the
previous work [3], we have shown that the bilayer Ising film with

nonmagnetic inter-layers exhibit the tricritical point, when the
exchange interaction in the spin-1 (lower) layer is larger than that
in the spin-1/2 (upper) layer. As far as we know, what phenomena
are obtained in the bilayer Ising film with non-magnetic interlay-
ers has not been investigated theoretically, when the value of Di

is randomly distributed by a bimodal distribution function. For
recent development of theoretical research in a variety of systems
with a random single-ion anisotropy, one can consult the refer-
ences in [4].

In Section 2, the model and formulation are briefly given within
the theoretical framework of the effective-field theory with
correlations (EFT). In section 3, the phase diagrams are obtained
anddiscussed. In section 4, the temperature dependences ofmagne-
tizations are obtained. The possibility ofmulti-compensation points
and the reentrantphenomenahavebeenobtained. The last section is
devoted to conclusion.

2. Model and formulation

We consider the system consisting of two graphene-like honey-
comb lattices with n non-magnetic inter-layers, as depicted in
Fig. 1. The white and black circles represent respectively the mag-
netic atoms with spin-1/2 and the magnetic atoms with spin-1 and
a crystal field Di. The spins (white and black circles) are coupled by
the nearest-neighbor exchange interactions JA and JB (JA > 0.0 and
JB > 0.0). In Fig. 1, each Ising spin on upper layer is coupled to the
corresponding spin on the lower layer with an indirect exchange
interaction – JR (JR > 0.0). The Hamiltonian of Fig. 1 is given by
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where ri
Z represents the spin-1/2 operator with ri

Z = ±1/2 and SJZ is
the spin-1 operator with SmZ = ±1 and 0. The first and the second
terms in (1) represent the contributions from the intra-layer inter-
actions. The indirect exchange interaction JR is given by

JR=J ¼ expð�kðnþ 1ÞÞ=ðnþ 1Þd; ð2Þ
when the non-magnetic layers between the two layers are arranged
by the equal distance a. J is the direct exchange interaction between
two magnetic layers, when they are coupled directly. The crystal
field Dm is randomly distributed according to the bimodal distribu-
tion function P(Dm), namely

PðDmÞ ¼ ½dðDm � Dð1:0þ hÞÞ þ dðDm � Dð1:0� hÞÞ�=2:0 ð3Þ
In general, the parameter d in (2) depends on the dimensional-

ity of the system. From recent discussions on magnetic graphene
systems, it is assumed that the value of d is larger than the value
of dimensionality of the system. The magnetic properties in gra-
phene systems have been often discussed by the use of the indirect
exchange interaction in which the distance-dependent oscillation
can be neglected [1–3]. In the following discussions, accordingly,
let us take the value of d as d = 3.0. In (2), furthermore, we have
assumed the following facts; When n = 0.0, it represents the fact
that the two magnetic layers are coupled by the direct exchange
interaction – J. Otherwise, it represents the indirect exchange
interaction between the two layers. From this procedure, we can
compare the differences of results between n = 0.0 and n– 0.0
cases systematically, as discussed in [1–3].

The total magnetization (mT = mT
Z) per site in the system is

defined as

mT ¼ ½mA þmB�=2:0; ð4Þ
where mA = mA

Z = <ri
Z> and mB = mB

Z = <<SmZ >>r. <A>r expresses the
random average of Dm. Within the EFT [5,6], the mA and mB in the
system are given by

mA ¼ ½cos hðA=2:0Þ þ 2:0 mA sin hðA=2:0Þ�3 ½qBfcos hðRÞ � 1:0g
þ 1:0�mB sin hðRÞ�fðxÞjx¼0 ð5Þ

and

mB ¼ ½qBfcos hðBÞ � 1:0g þ 1:0þmB sin hðBÞ�3 ½cos hðR=2:0Þ
� 2:0 mA sin hðR=2:0Þ�FðxÞjx¼0

ð6Þ

qB ¼ ½qBcos hðBÞ � 1:0þ 1:0þmB sin hðBÞ�3 ½cos hðR=2:0Þ
� 2:0mA sin hðR=2:0Þ�GðxÞjx¼0 ð7Þ

where qB = <<(SmZ )2>>r, A = JA O, B = JB O and R = JR O. O = o/ox is the
differential operator. Here, the functions f (x), F(x) and G (x) are
defined by

fðxÞ ¼ tan hðbx=2:0Þ=2:0 ð8Þ

FðxÞ ¼ sin hðbxÞ=½2:0 cos hðbxÞ þ expð�Dbð1:0þ hÞÞ�
þ sin hðbxÞ=½2:0 cos hðbxÞ þ expð�Dbð1:0� hÞÞ� ð9Þ

GðxÞ ¼ cos hðbxÞ=½2:0 cos hðbxÞ þ expð�Dbð1:0þ hÞÞ�
þ cos hðbxÞ=½2:0 cos hðbxÞ þ expð�Dbð1:0� hÞÞ�; ð10Þ

where b = 1.0/kBT. The transition temperature TC of the system can
be obtained from the relation

½6:0K1 � 1:0�½3:0K2 � 1:0� � 2:0K3K4 ¼ 0:0; ð11Þ
where the coefficients Kn (n = 1–4) are given by

K1 ¼ sin hðA=2:0Þcos h2ðA=2:0Þ½qBfcos hðRÞ � 1:0g þ 1:0�2fðxÞjx¼0

K2 ¼ sin hðBÞcos hðR=2:0Þ½qBfcos hðBÞ � 1:0g þ 1:0�2FðxÞjx¼0

K3 ¼ cos h3ðA=2:0Þsin hðRÞFðxÞjx¼0

K4 ¼ sin hðR=2:0Þ½qBfcos hðBÞ � 1:0g þ 1:0�3FðxÞjx¼0

ð12Þ
The value of qB in (12) can be given by solving the following

equation

qB ¼ cos hðR=2:0Þ½qBfcos hðBÞ � 1:0g þ 1:0�3GðxÞjx¼0: ð13Þ
In the following sections, the magnetic properties of the system

are examined by solving the relations given in this section numer-
ically. For the aim, let us here introduce the reduced parameters, t,
a, b, r and d as

t ¼ kBT=J;
a ¼ JA=J;
b ¼ JB=J;
r ¼ JR=J and
d ¼ D=J

ð14Þ

Before doing the numerical works, one should notice the follow-
ing facts; When the value of h in (9) and (10) is given by h = 0.0, the
present formulation given in this section is completely equivalent
to those in the previous work [3]. Accordingly, we can use the
numerical results obtained in the work as the starting and guide
points. Furthermore, when h = 1.0, it represents the following
physical result; With the probability of p = 1/2, the dilution of
the single-ion anisotropy is done.

3. Phase diagrams

Selecting the system with a = 1.0 and b = 0.5, just like the
results of Fig. 2 in [3], let us examine the phase diagrams (tC = kB-
TC/J versus d plot) of the present system. In Fig. 2(A), the effects of h
on the TC value are given by taking the values of n = 1.0 and k = 0.0,
where the dashed curve labeled h = 0.0 is equivalent to the corre-
sponding one in Fig. 2(A) of [3]. When the value of h is larger than
h = 1.0, the tC curve (the curve labeled h = 3.5 or h = 5.0) shows a

Fig. 1. Schematic representation of a bilayer Ising film on graphene-like honey-
comb lattices, which are consisted of spin-1/2 (white circle) and spin-1 (black
circle) atoms with a randomly distributed single-ion anisotropy. They are coupled
by the nearest-neighbor exchange interactions JA (in the upper layer) and JB (in the
lower layer). There exist n non-magnetic layers between the two layers. Each Ising
spin on upper layer is coupled to the corresponding spin on the lower layer with an
indirect exchange interaction – JR (JR > 0.0).
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