Accepted Manuscript

Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method

M.P. Nikitin, A.V. Orlov, S.L. Znoyko, V.A. Bragina, B.G. Gorshkov, T.I. Ksenevich, V.R. Cherkasov, P.I. Nikitin

PII: S0304-8853(17)32186-8

DOI: https://doi.org/10.1016/j.jmmm.2017.10.078

Reference: MAGMA 63292

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 10 July 2017 Revised Date: 17 October 2017 Accepted Date: 20 October 2017

Please cite this article as: M.P. Nikitin, A.V. Orlov, S.L. Znoyko, V.A. Bragina, B.G. Gorshkov, T.I. Ksenevich, V.R. Cherkasov, P.I. Nikitin, Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method, *Journal of Magnetism and Magnetic Materials* (2017), doi: https://doi.org/10.1016/j.jmmm.2017.10.078

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Multiplex biosensing with highly sensitive magnetic nanoparticle quantification method

Nikitin M.P.^{a,b}, Orlov A.V.^a, Znoyko S.L.^a, Bragina V.A.^a, Gorshkov B.G.^a, Ksenevich T.I.^b, Cherkasov V.R.^b, Nikitin P.I.^{a,c*}

Keywords: non-linear magnetization; multiplex immunoassay; simultaneous detection; biomagnetic chips; micropillar arrays; microfluidic sensor chips.

Abstract

Unique properties of magnetic nanoparticles (MNP) have provided many breakthrough solutions for life science. The immense potential of MNP as labels in advanced immunoassays stems from the fact that they, unlike optical labels, can be easily detected inside 3D opaque porous biosensing structures or in dyed mediums, manipulated by an external magnetic field, exhibit high stability and negligible background signal in biological samples, etc. In this research, the magnetic nanolabels and an original technique of their quantification by nonlinear magnetization have permitted development of novel methods of multiplex biosensing. Several types of highly sensitive multi-channel readers that offer an extremely wide linear dynamic range are developed to count MNP in different recognition zones for quantitative concentration measurements of various analytes. Four approaches to multiplex biosensing based on MNP have been demonstrated in one-run tests based on several 3D porous structures; flat and micropillar microfluidic sensor chips; multi-line lateral flow strips and modular architecture of the strips, which is the first 3D multiplexing method that goes beyond the traditional planar techniques. Detection of cardio- and cancer markers, small molecules and oligonucleotides were used in the experiments. The analytical characteristics of the developed multiplex methods are not inferior to those of the modern laboratory techniques. The developed multiplex biosensing platforms are promising for medical and veterinary diagnostics, food inspection, environmental and security monitoring, etc.

^a Prokhorov General Physics Institute, Russian Academy of Science, 38 Vavilov St, 119991 Moscow, Russia

^b Moscow Institute of Physics and Technology (State University), 9 Institutskii per., Dolgoprudny, Moscow Region, 141700, Russia

^c National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, 115409 Moscow, Russia

^{*} Corresponding author: Nikitin P.I., e-mail: nikitin@kapella.gpi.ru, Tel./Fax: +7 499 1350376

Download English Version:

https://daneshyari.com/en/article/8153216

Download Persian Version:

https://daneshyari.com/article/8153216

Daneshyari.com