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a b s t r a c t

In this letter, we have discussed the implications of nonlocal-in-time kinetic energy approach recently
introduced by Suykens on the dynamics of charge particles spin in a magnetic field with spin. It was
observed that both the Landau quantization of the energy and their levels positions are modified.
Besides, massive photons are generated in magnetic materials similar to the one encountered in massive
quantum electrodynamics. These massive photons depend on the electron mass and on the nonlocal
relaxation time. For solid copper, we found M � 3:4� 10�20 a�2 eV=c2 where a is a real free parameter.

� 2018 Elsevier B.V. All rights reserved.

There exists currently an ingoing growing interest in higher-
derivative models in classical and quantum field theory, either
from the applicable point of view or from the fundamental one.
In the past, these theories were avoided because of undesirable
properties related to states of negative norms. However, due to
their generic features, higher-order derivative theories constitute
a motivating challenge in sciences. These theories are character-
ized by the presence of an infinite number of the higher-order tem-
poral derivatives of the coordinates in the Lagrange function and
they don’t disagree with the formalism of quantum theory [1–5].
In classical theories, most of the dynamical equations are governed
by 2nd-order differential equations. However, there are some
exceptions to this rule and the most well-known example is the
Abraham-Lorentz theory which describes the equation of motion
for charged particles taking into account radiative effects [6]. There
exist several methodologies to deal with higher-order derivative
theories, e.g. the method of perturbative constraints introduced
in [7] which is used in higher-order dynamical systems that are
‘‘truncated perturbative expansions of nonlocal dynamical sys-
tems” where their equations of motion depend on more than one
moment in time. These nonlocal theories are observed in electro-
dynamics where charged particles interact by means of retarded
potentials, i.e. the forces acted on a particle depend on the history
of both its proper position and the rest of particles positions. A
more recent interesting approach to deal with higher-order deriva-
tives in the one introduced by Suykens in [8] which in fact is moti-
vated from Feynman’s observation of the kinetic energy functional
which can be written as 1

2m
xkþ1�xk

e
xk�xk�1

e in place of 1
2mvv with

e ¼ tiþ1 � ti, i.e. particle positions are shifted backward and forward
in time (m being the mass of the body and v ¼ dx

dt � _x its velocity).
Suykens in contrast use the shifting-coordinates methodology and
rewrite the kinetic energy as K ¼ 1

2mv
D
2 where D ¼ _xðt þ sÞþ

_xðt � sÞ and s is a somewhat tiny parameter entitled the ‘‘nonlocal
time parameter”. This simple maneuver leads to a number of moti-
vating properties at large and small scales which were discussed in
a series of research papers [9–15]. Obviously, nonlocal terms
expanded in the following Taylor series xðt þ sÞ ¼ xðtÞ þPn

k¼1

sk
k! x

ðkÞðtÞ and xðt � sÞ ¼ xðtÞ þPn
k¼1

ð�sÞk
k! xðkÞðtÞ became higher-

derivative expansions. Due to the relevance of nonlocality in
classical electrodynamics [6,16], in Weyl semi-metals [17], in
superconducting films [18], in linearly accelerated systems [19],
in superconductor [20], in planar Josephson junctions [21], in
arrays of quantum dots [22] among others, we discuss in this letter
the quantizing dynamics inside a solid of a charged particle in the
presence of a magnetic field with spin. Nevertheless, one of the
main consequences of Suykens’s nonlocal-in-time kinetic energy
approach is the emergence of an acceleratum operator â ¼ p̂c

aimr
based on Caianiello’s maximal acceleration arguments in quantum
mechanics [13]. Here p̂ ¼ �i�hr is the quantum momentum opera-
tor, c the celerity of light, i ¼

ffiffiffiffiffiffiffi
�1

p
2 C and a is a real parameter.

Since we are considering an upper limit for the acceleration of
theparticle, the third-order of the position (the jerk) is neglected.
It will be of interest to explore the consequences of its presence
in the nonlocal electrodynamics theory with spin.

In the absence of the spin, the motion of a charged particle in a

magnetic field has the Lagrangian L ¼ 1
2m~v2 � q/þ q~v �~A, q being

the charge, / the scalar potential and ~A the vector potential, e.g.
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electrons in a metal. Replacing the kinetic energy term by
K ¼ 1

2mv
D
2 and performing the Taylor series expansions of

D ¼ _~xðt þ sÞ þ _~xðt � sÞ about s ¼ 0, we find:

Ls;n ¼ 1
2
m~v2 þ 1

4
m~v

Xn
k¼1

1þ ð�1Þk
� � sk

k!
~xðkþ1Þ

 !
� q/þ q~v �~A; ð1Þ

and the corresponding Hamiltonian is given by:

Hs;n ¼
Xnþ1

k¼0

Xk�1

j¼0

ð�1Þ j ~xðk�jÞ d
j

dt j
@Ls;n
@~xðkÞ

 !
� Ls;n: ð2Þ

For n > 2, terms on s4; s6; . . . occur in Eq. (1) which could be
neglected. Therefore we limit our analysis up to n ¼ 2 and since
we wish to take into account the acceleratum operator, we neglect
the term ~xð3Þ in Eq. (2) and we find after algebra the Hamiltonian
momentum operator

Ĥs;2 ¼ 1
2m

~̂p� q~A
� �2

� 1
4
s2m~̂a2 þ q/þ Oðs3Þ: ð3Þ

In the presence of a single spin, it is required to add to Eq. (3)

the Hamiltonian Ĥ ¼ � 2glB
�h Ŝ where lB ¼ q�h

2m is the Bohr magnetron,

g is the electron-spin g-factor and Ŝ is the spin operator. In partic-
ular for the case of a constant magnetic field pointing in the

z-direction, i.e. ~B ¼ ð0;0;BzÞ and / ¼ 0 we find:

Ĥs;2 ¼ 1
2m

~̂p� q~A
� �2

� 1
2
s2m2~̂a2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ĥ1;s

�2glB

�h
BzŜz|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Ĥ2

þOðs3Þ: ð4Þ

In our arguments, the spatial part in the Hamiltonian is modi-
fied whereas the spin part is the same as in the standard formal-
ism. We define the state vector by W >¼ wj > � vj >, i.e. the
tensor product of the spatial state vector wj > by the spin state vec-
tor vj > [23]. Using the fact that

Ŝ v >j ¼ �glBBz 	z >j ;

since Ŝz 	z >j ¼ 	 �h
2, we can use Eq. (4) to write the nonlocal

Schrödinger equation as:

Ĥ1;s w > � 	z >jj ¼ E w > � 	z >jj ; ð5Þ
where E ¼ E	 glBBz. The Schrödinger equation in the space vari-
ables is obtained simply by multiplying Eq. (5) from the left by
<~rj �< ~xj where < ~xj 	 z > is the spin wave function and plug-

ging in Ĥ1;s which gives after algebra:

1
2m

�hrþ q~A
� �2

� �h2c2s2

2a2 D2

 !
wð~r; tÞ ¼ Ewð~r; tÞ: ð6Þ

Using the Landau gauge ~A ¼ xBz~y; we can write Eq. (6) as:

1
2m

��h2 @2

@x2
þ @2

@y2
þ @2

@z2

 !
þ 2i�hqBzx

@

@y
þ q2B2

z x
2
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2a2

@2
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@y2
þ @2

@z2

 !2
1
Awð~r; tÞ ¼ Ewð~r; tÞ: ð7Þ

Using the possible ansatz is wð~r; tÞ � w ¼ /ðxÞeiðkyyþkzzÞ [23] we
get:

� �h2c2s2

4ma2 /ð4Þ � 1� c2s2

2a2 k2y þ k2z
� �� �

�h2

2m
/00

þ q2B2
z

2m
x� �hky

qBz

� �2

/ ¼ E� �h2k2z
2m

 !
/ � E/: ð8Þ

Surprisingly, this is the equation of a 4th-order oscillator which
can be written after neglecting terms on s4 as:

� �h2c2s2

4ma2 /ð4Þ � �h2

2m
/00

þ q2B2
z

2m
1� c2s2

2a2 k2y þ k2z
� �� �

x� �hky
qBz

� �2

/

¼ E� �h2k2z
2m

1� c2s2

2a2 k2y þ k2z
� �� � !

/ � E/; ð9Þ

where

m � m 1þ c2s2

2a2 k2y þ k2z
� �� �

þ Oðs3Þ; ð10Þ

being the effective mass. We can compare Eq. (9) with the equation
of the 4th-order quantum relativistic oscillator which usually takes
the form:

� �h4

8m3c2
/ð4Þ � �h2

2m
/00 þ 1

2
mx2ðx� x0Þ2/þmc2/ ¼ E/: ð11Þ

The energy levels of Eq. (11) may be obtained using the method
of Fourier Hermite series [24] and are given by:

En ¼ mc2 þ �hx nþ 1
2

� �
� �h2x2

8mc2
3n2 þ 15n

2
þ 15

4

� �
;n 2 ð12Þ

Comparing Eqs. (9) and (11) we get:

En � mc2 þ �h
qBz

m
1� c2s2

4a2 k2y þ k2z
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nþ 1
2

� �

� �h2q2B2
z

8m3c2
3n2 þ 15n

2
þ 15

4

� �
; ð13Þ

and consequently we find:

En ¼ mc2 þ �hqBz

m
nþ 1

2

� �
þ �h2k2z

2m

 !
1� c2s2

4a2 k2y þ k2z
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� �h2q2B2
z

8m3

3n2 þ 15n
2

þ 15
4

� �
� glBBz þ Oðs3Þ: ð14Þ

This relation differs from the standard result and in terms of m
it can be approximate by:

En ¼ mc2 � �h2q2B2
z8m

3 3n2 þ 15n
2

þ 15
4

� � !
1þ c2s2

2a2 k2y þ k2z
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þ �hqBz

m
nþ 1

2

� �
þ �h2k2z

2m

 !
� glBBz þ Oðs3Þ:

ð15Þ
Eq. (15) gives rise to another effective nonlocal mass which

takes the following form:

M ¼ mc2s2

2a2 k2y þ k2z
� �

: ð16Þ

This mass is independent of the magnetic field and depends on the
components of the wave vector in the xy-plane. Numerically, if we
consider N-atoms in a solid separated by a lattice spacing L each
(for solid Copper L � 3:61� 10�10 m) [25], then usually k ¼ 2p

k ¼ p
L

and besides for macroscopic solids at ambient temperature
s � 10�11 s [26], we obtain for the case of the electron M � 3:4�
10�20a�2 eV=c2. For a ¼ 10�1, we find M � 3:4� 10�18 eV=c2 which
is close to the mass of a photon [27]. The following statement then
holds:

Statement 1: The nonlocal-in-time (kinetic energy) quantization
of a charged particle in a magnetic field with spin is governed

214 R.A. El-Nabulsi / Journal of Magnetism and Magnetic Materials 458 (2018) 213–216



Download English Version:

https://daneshyari.com/en/article/8153351

Download Persian Version:

https://daneshyari.com/article/8153351

Daneshyari.com

https://daneshyari.com/en/article/8153351
https://daneshyari.com/article/8153351
https://daneshyari.com

