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Exact expression for the magnetic field of a finite cylinder with arbitrary
uniform magnetization
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a b s t r a c t

An exact analytical expression for the magnetic field of a cylinder of finite length with a uniform, trans-
verse magnetization is derived. Together with known expressions for the magnetic field due to longitu-
dinal magnetization, the calculation of magnetic fields for cylinders with an arbitrary magnetization
direction is possible. The expression for transverse magnetization is validated successfully against the
well-known limits of an infinitely long cylinder, the field on the axis of the cylinder and in the far field
limit. Comparison with a numerical finite-element method displays good agreement, making the advan-
tage of an analytical method over grid-based methods evident.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Analytic expressions for the magnetic fields produced by inher-
ently magnetic materials or induced in magnetically susceptible
materials, are only well-known for some classic textbook cases,
such as the field of point multipoles and infinitely long wires car-
rying a current [1–4]. In the past, many papers on demagnetization
factors [5–11] and cylindrical ferromagnets [12–15] have been
published. In demagnetization tensors with regard to uniformly
magnetized finite cylinders, implicit analytic expressions have
been incorporated [16,17]. Kraus [16] applies a magnetic surface
charge method using integrals that contain Bessel functions. Tan-
don et al. [17] and Beleggia et al. [18,19] employ a Fourier trans-
form approach. Herein use is made of a shape function that is
equal to the trace of the demagnetization tensor, which connection
is difficult to derive from the commonly used magnetic surface
charge description. Magnetic fields of complex geometries often
can be solved only numerically via finite element methods (F.E.
M.) [20,21]. However, the domain discretization inherent to these
methods may ultimately lead to numerical inaccuracies, unless
expensive higher-order calculations are performed, or the calcula-
tion mesh is refined. The analytic modelling of the field has a clear
advantage over finite-element methods as the necessary magnetic
quantities can be probed at all required coordinates, with minimal

computational effort. This is highly useful, for example, when
dynamical systems are modelled, such as the movement of
magnetic nanoparticles in magnetic field gradient [22,23].

A geometry for which analytical expressions for magnetic
quantities are readily available, is an axisymmetric solenoid of
finite length [24–27]. Exact expressions for the vector potential
U, magnetic flux density B (with axial and radial components),
magnetic force F ¼ ðm � $ÞB, where m is the magnetic dipole
moment of the object, and other quantities can be formulated
using special functions such as elliptic integrals. The derivation
of these expressions usually extends the treatment of a single
circular current loop by integrating over a certain length along
the symmetry axis of the loop [28,29]. The solenoid field also
describes the field of a cylindrical uniform permanent magnet with
its magnetization vector M along the axis of symmetry (longitudi-
nal magnetization). For different magnetization directions, such as
M perpendicular to the axis of symmetry (transverse magnetiza-
tion), other field equations are required. In the case of transverse
magnetization, explicit analytical results are available for an infi-
nite cylinder [2,30], and for the on-axis field of a finite cylinder
derived by Wysin [31]. To expand upon these known relations,
we have derived an explicit, analytical expression for the magnetic
field of a transversely, uniformly magnetized finite cylinder in all
spatial field points, inside as well as outside the cylinder. By com-
bining the expression for longitudinal and transverse magnetiza-
tion we will also demonstrate the possibility of accurately
calculating the resulting magnetic field for a cylinder with an
arbitrarily chosen magnetization vector.
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The expressions derived here are applied to the modelling of a
high-gradientmagnetic separation process, using a separation filter
comprisingmany small magnetizable fibres. By combining the local
magnetic fields of a large collection of (non-overlapping) cylinders,
we aim to calculate the movement of magnetic nanoparticles
through such a separation filter [32] and whether, ultimately, the
nanoparticles can be trapped by the filter. In this paper, in addition
to the calculations for a single cylinder, we explore the possibility
to calculate the magnetic field for a combination of multiple cylin-
ders by means of our analytical expressions, which is also relevant
for a broad range of other applications [33–35].

2. Preliminary

Consider a circular cylindrical body of radius R and semi-length
L, with its centroid at the origin of a cylindrical coordinate system
ðq;u; zÞ and its axis aligned with the z-direction (see Fig. 1). A uni-
formmagnetization of the body along an arbitrarily chosen magne-
tization vector M can always be decomposed into a longitudinal
and transverse component,

M ¼ MlẑþMtq̂ ð1Þ
In reality, for a magnetizable material, the acquired magnetiza-

tion will in general not have the same direction as the applied field
Hext, as the magnetization vector will rotate to minimize its energy
depending on the magnetic susceptibility of the material and the
demagnetization factors of the body. The Stoner-Wohlfarth model
describes this principle in detail [36,37]. In general, the magnetiza-
tion is related to the magnetic field H, the magnetic flux density B
and the permeability of vacuum l0 through,

B ¼ l0ðHþMÞ ð2Þ
We proceed by restating the known expression for B for longi-

tudinal magnetization [25,27] and continue by deriving an expres-
sion for the case of transverse magnetization. The validity of the
equations are tested by determining several limiting cases. By
combining Eqs. (1) and (2), the field of a finite cylinder with an
off-axis magnetization vector is calculated and these results are
compared with numerical calculations. Finally, the applicability
of our model to the description of magnetizable cylinders are
tested against the results of a finite element method.

3. Longitudinal magnetization (review of past work)

Equations for thefield inside andoutside a longitudinallymagne-
tized, finite cylinder were first retrieved by Callaghan and Maslen
[25]. They obtained their result by considering a finite cylinder as
a collection of current loops (i.e. an ideal solenoid). The totalmagne-
tization isM � nI, with n the number of turns per unit of length and I
the current per turn. By applying the Biot–Savart law, the magnetic
field can be calculated directly in terms of elliptic integrals. Derby
and Olbert [27] revisited the derivation and provided a computa-
tionally convenient form using a combination of generalized com-
plete elliptic integrals [38]. They correctly retrieved the field of a
current loop in the limit L ! 0 and the far-field limit of a point dipole
at large distances from the cylinder.

In Derby and Olbert [27] only an integral form of the field equa-
tions is given. Here we restate these results in closed form, in terms
of elliptic integrals, obtaining equations similar to those for the
transverse case presented in the following section.

Bq ¼ l0MR
p

aþP1ðkþÞ � a�P1ðk�Þ½ �

Bz ¼ l0MR
pðqþ RÞ bþP2ðkþÞ � b�P2ðk�Þ

� � ð3Þ

where Bq and Bz are the radial and axial components of the mag-
netic flux density, respectively. Two auxiliary functions are defined
(see Appendix A) as,

P1ðkÞ ¼ K � 2

1� k2
K� Eð Þ

P2ðkÞ ¼ � c
1� c2

P �Kð Þ � 1
1� c2

c2P �K� � ð4Þ

and the following shorthand notations will be employed:

n� ¼ z� L
a� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2�þðqþRÞ2
p b� ¼ n�a�

c ¼ q� R
qþ R

k2� ¼ n2� þ ðq� RÞ2
n2� þ ðqþ RÞ2

ð5Þ

The symbols K; E and P are used to indicate the evaluation of the
complete elliptic integrals of the first, second and third kind, as
follows,

K ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p� �
¼ R p

2
0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�k2Þ sin2 h

p

E ¼ E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p� �
¼ R p

2
0 dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� k2Þ sin2 h

q
P ¼ P 1� c2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p� �
¼ R p

2
0

dh

1�ð1�c2Þ sin2 hð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1�k2Þ sin2 h

p

ð6Þ

Note that Bu is absent in Eq. (3) due to the radial symmetry of the
system. A visualization of the magnetic field lines produced by
these equations is given in Fig. 2a.

4. Transverse magnetization

To derive the field equations for a transversely magnetized
cylinder, we follow the approach of Callaghan and Maslen [25]
and Derby and Olbert [27]. We start by choosing a magnetization
vector perpendicular to the long axis of the cylinder. A convenient
choice is a magnetization along the Cartesian x-axis, M ¼ Mx̂,
although any direction in the xy-plane would be suitable for sym-
metry reasons. Assuming there are no free currents present, the
magnetic field can be expressed as the gradient of a magnetostatic
scalar potential

H ¼ �$Um ð7Þ

In the following, we derive the exact expression for the potential
Um. The components of the H-field can be derived following similar
mathematical manipulations, but only the final results will be pre-
sented in Section 4.2.

M

y
x

z

φ

z´

ρ

L

R

Fig. 1. Schematic representation of a magnetized cylinder of semi-length L and
radius R with an arbitrary magnetization vector M. The cylindrical (q;u; z), and
Cartesian (x; y; z) coordinate systems are indicated.
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