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a b s t r a c t

The paper presents a computational study of the ground-state properties of a quantum nanomagnet pos-
sessing the shape of a finite two-legged ladder composed of 12 spins S ¼ 1=2. The system is described
with isotropic quantum Heisenberg model with nearest-neighbour interleg and intraleg interactions sup-
plemented with diagonal interleg coupling between next nearest neighbours. All the couplings can take
arbitrary values. The description of the ground state is based on the exact numerical diagonalization of
the Hamiltonian. The ground-state phase diagram is constructed and analysed as a function of the inter-
actions and the external magnetic field. The ground-state energy and spin-spin correlations are exten-
sively discussed. The cases of ferro- and antiferromagnetic couplings are compared and contrasted.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Low-dimensional systems attract increasing attention of solid
state physicists. The most intensive studies focus on various nanos-
tructures and within this class a considerable attention is paid to
magnetic nanosystems [1–3]. The principal motivation for studies
of the smallest nanostructured magnetic systems is the possibility
of arranging them within bottom-up approach from single atoms
of surfaces [4–6]. This approach allows the design and engineering
of artificial nanomagnets with high precision. Moreover, their
properties can also be carefully characterized at the nanoscale
[7–11]. What is crucial, the geometry [12] and underlying mag-
netic interactions in such systems [13–16] can be tuned to achieve
the desired characteristics. It has been demonstrated that the
nanomagnets arranged of single atoms can serve as memory
devices, what proves the high potential for applications [5,6].
Moreover, the nanomagnetic systems are also hoped to be useful
for quantum computations [17], to mention, for example, spin
clusters representing the qubits [18,19]. This route is particularly
promising when based on molecular nanomagnets [20–24]. The
mentioned facts serve as a strong motivation for theoretical studies
of a variety of nanomagnetic systems.

One of the interesting classes of such systems is nanomagnets
possessing the shape of spin ladder with finite length. This struc-

ture was the subject of experimental interest in Ref. [6] and built
a prototypical memory device. It should be mentioned that major
attention in the literature is paid to infinite spin ladders with var-
ious number of legs, constituting one-dimensional systems [25–
29]. In that context the notion of Haldane gap and the dependence
of excitations on spin magnitude and the number of legs in the lad-
der should be mentioned [25]. However, highly interesting proper-
ties can be shown also by the finite systems themselves. Although
the magnetic ordering is excluded in such structures, yet they can
exhibit interesting magnetic phases and cross-overs between
them. Among the studies of such zero-dimensional structures,
the works based on exact methods should be especially mentioned
[27,30–44]. It is worth emphasizing that rigorous and exact
numerical solutions are, so far, available only for a very limited
class of models (especially when the quantum version is consid-
ered) [45–47].

In order to explore the magnetic properties of the finite struc-
tures, it is first vital to examine their ground states, taking into
account various possible interactions between the spins as well
as the external magnetic field. This is the aim of the present paper,
in which we investigate a nanomagnet being a two-legged finite
spin ladder with 12 spins S ¼ 1=2. For this purpose we select an
approach based on exact diagonalization, which provides an
approximation-free picture of the physics of the studied system.
The further parts of the paper contain a detailed description of
the system in question, the theoretical approach and the review
of the obtained results.
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2. Theoretical model

The system of interest in the present study is a nanomagnet
having the shape of a finite ladder with two (equivalent) legs.
The schematic view of the system is presented in Fig. 1. It consists
of N ¼ 12 quantum spins S ¼ 1=2, coupled with isotropic,
Heisenberg-like interactions. Therefore, it is described with the fol-
lowing quantum Hamiltonian:
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located at site labelled with i (i ¼ 1; . . . ;12), with Sai ¼ ra=2, where
ra is the appropriate Pauli matrix and a ¼ x; y; z is the direction in
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exchange integral between nearest-neighbour spins in the same
leg of the ladder amounts to J1, while the interactions between
the ladder legs are denoted by J2 for nearest neighbours (rung
interactions) and J3 for next-nearest neighbours (crossing interac-
tions); see the scheme Fig. 1. All the exchange integrals J1; J2; J3 are
allowed to take arbitrary values, both positive (ferromagnetic) and
negative (antiferromagnetic). The external magnetic field acting in
z direction in spin space is introduced by H.

In the present study, the interest is focused on the ground-state
properties of the system, at zero temperature. In order to perform
the description, the full Hamiltonian (Eq. (1)) is constructed in a
form of a matrix (of the size 2N � 2N ¼ 4096� 4096) and diagonal-
ized numerically [48]. This procedure yields the eigenvalues Ek and
eigenvectors jwki (which can be degenerate). Among the eigenen-
ergies, the ground-state energy E0 is selected, with eigenvectors
jwp

0i, where p ¼ 1; . . . ; d and d is the degeneracy. At the zero tem-
perature, each of the degenerate ground states is equally probable.
Therefore, the ground-state average of the arbitrary quantum oper-
ator A can be evaluated on the basis of the following formula:

hAi ¼ 1
d

Pd
p¼1hwp

0jAjwp
0i. The observable of special interest is here

the total z component of spin of the nanomagnet, with the average
value of ST ¼ hPN

i¼1S
z
i i. In that context, another quantum number

can be defined, namely the total spin quantum number, defined

by eST
eST þ 1

� �
¼ hPN

i¼1S
2
i i. Further important quantities are spin-

spin correlation functions cabij ¼ hSai Sbj i, where a; b ¼ x; y; z.
The presented theoretical formalism serves as a basis for

numerical calculations of the crucial ground-state properties of

the studied nanomagnet, which will be discussed in the following
section of the paper.

3. Numerical results and discussion

All the calculations presented in this section rely on the exact
numerical diagonalization of the system Hamiltonian (Eq. (1)) per-
formed with the Mathematica software [48]. The discussion will be
subdivided into subsections related to the key characteristics of the
ground state.

3.1. Ground-state phase diagram

Let us commence the analysis from the investigation of the
ground-state phase diagram for the system in the external mag-
netic field. The phases correspond here to various values of the z
component of the total spin, denoted by ST . The phase diagram pre-
senting the stability areas for phases with different values of ST as a
function of J2=jJ1j and the magnetic field H=jJ1j is shown in Fig. 2,
for different values of J3=jJ1j. The cases of antiferromagnetic
J1 < 0 and ferromagnetic J1 > 0 are shown separately, as the abso-
lute value jJ1j is taken as the convenient energy to normalize other
quantities. Let us analyse first the diagram for J1 < 0 and
J3=jJ1j ¼ 0:0 [Fig. 2(a)]. At J2 ¼ 0:0 we deal with a pair of non-
interacting finite spin chains, so the total spins take only even val-
ues. Introducing a finite, non-zero interaction J2 restores the pres-
ence of the phases with all possible spins. What is interesting, for
strongly antiferromagnetic J2 the phase boundaries linearize and
have identical slopes. This can be explained due to the fact that
in the limit of dominant J2 coupling the critical fields do not
depend on J1 (but only on J2 itself). On the other hand, for strongly
ferromagnetic J2 the critical fields H=jJ1j cease to depend on J2. Let
us mention that the diagram bears some resemblance to Fig. 2 in
Ref. [27], where the two-legged finite ladder was studied with
the aim of characterizing an infinite system.

If the antiferromagnetic crossing inter-leg interaction J3 is
switched on [as shown in Fig. 2(b)], the ladder legs are no longer
non-interacting for J2 ¼ 0:0. As a consequence, for the full range
of exchange integrals J2 we pass through all the states with spins
0; . . . ;6 when the magnetic field increases. However, close to some
critical values of J2 (slightly decreasing with the considered spin)
the phases with odd spins are suppressed. The limiting behaviour
of the diagram for strongly ferromagnetic and strongly antiferro-
magnetic coupling J2 remains similar to the case of J3 ¼ 0:0.

Fig. 1. A schematic view of the quantum nanomagnet composed of 12 spins S ¼ 1=2, having a shape of finite two-legged ladder. The exchange integrals between the spins are
depicted schematically.
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