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Phase transitions of the frustrated bilayer spin one XY model
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a b s t r a c t

In this paper we use the SU(3) Schwinger boson representation, followed by a mean field decoupling, to
study the disordered phases of the bilayer spin one quantum XY antiferromagnet on a square lattice with
next near neighbor and a single ion anisotropy. The phase diagram at zero temperature is obtained. The
ratio g ¼ J?=J1 between the interlayer J? to the intralayer near neighbor J1 exchange interactions exhibits
a quantum phase transition at a critical ratio gc ¼ 21:725 that separates the small- g Nèel phase from the
large g quantum disordered paramagnet. The effect of next near neighbor interactions is discussed. The
Neel phase is studied using a self consistent harmonic approximation that takes into account topological
effects.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

An important focus of condensed matter physics is the study of
strongly-correlated systems. In these systems, quantum fluctua-
tions give rise to many competing and exotic new phases. In this
context, for over a decade, there has been considerable interest
in the study of disordered magnetic phases mainly related with
the subject of spin liquids. Quantum spin liquids (QSL) are systems
of interacting spins that have a disordered ground state where
their spin arrangements are constantly in flux, much like the mole-
cules of an ordinary liquid. QSLs are of great interest in their own
right, but they may also serve as platforms for ‘‘topological quan-
tum computing”. The search for a quantum spin liquid has focused
mainly on spin ½ two dimensional quantum antiferromagnet [1].
The best studied example is the J1–J2 Heisenberg model. For small
g ¼ J2=J1 the ground state is Neel ordered. It has been found [2]
that the system undergoes a second order quantum phase transi-
tion at a certain g = g1c from the Neel to a quantum disordered
phase that is believed to be a spin-liquid state. For g larger than
a critical value g2c, one has a collinear ordered state, where the
neighboring spins align ferromagnetically along one axis of the
square lattice and antiferromagnetically along the other. As there
is as yet no direct experimental confirmation of QSL alternative
explanations have been proposed for some QSL candidates. For
instance, Chen et al. [3] have argued that the observed phe-
nomenology in a spin one triangular lattice can be understood in
terms of a conventional picture arising as a crossover due to the
proximity of a quantum critical point between spin spirals favored
by the frustrated exchange and a quantum paramagnetic phase,

favored by a single ion anisotropy, having in mind that single ion
anisotropy should be common in S > ½ antiferromagnets.

Now let us consider another mechanism, besides frustration,
that leads to disorder. When two planes of the two dimensional
Heisenberg antiferromagnet on a square lattice are coupled
together, forming a bilayer, the interplane coupling initially stabi-
lizes but when it is made strong enough the long-range antiferro-
magnetic Néel order is destroyed. For spin ½, it is believed that the
disordered phase is a spin liquid state. The model has being studied
using SU(2) Schwinger boson formalism [4,5], quantum Monte
Carlo simulations [6], series expansions [7], spin wave theory [8],
modified spin wave theory [9], and the bond operator mean field
method [10,11]. One reason for the interest in this model is that
the normal-state magnetic properties of superconductors YBa2Cu3-
O6+x, containing the weakly coupled CuO2 planes, may be due to its
lying close to a quantum phase transition in the bilayered antifer-
romagnetic model [4,11].

As the understanding of spin ½ models advanced, a next step
was to investigate systems with spin one on frustrated lattices
[12]. They present a middle ground between the quantum S = ½
system and the classical model. Several ground state phases that
are realized in spin one systems are not found in S = ½models. This
includes the quantum paramagnetic nematic phase that appears in
the presence of a single-ion anisotropy. In the simplest case, with
axial symmetry, the spin quadrupole tensor has the same mathe-
matical form as the orientational order parameter of nematic liquid
crystals. There is a preferred axis in space without a preferred
direction along this axis. The nematic order is characterized by a
non-zero spin quadrupole tensor Qij �< Sai S

b
j þ Sbj S

a
i > which devi-

ates from isotropy.
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Although the effect of frustration, bilayer coupling and single
ion anisotropy [12] has been well studied in the Heisenberg model,
less attention has been dedicated to the XY model.

Here we consider the case of the spin one XY model with near
and next near neighbor exchange interactions and single ion aniso-
tropy on the square-lattice bilayer, described by the Hamiltonian

H ¼
X
<i;j>

X2
l¼1

JðlÞ1 ðSx
i;lS

x
j;l þ Sy

i;lS
y
j;lÞ þ J2

X
<<i;j>>

X2
l¼1

ðSx
i;lS

x
j;l þ Sy

i;lS
y
j;lÞ

þ J?
X
i

ðSx
i;1S

x
i;2 þ Sy

i;1S
y
i;2Þ þ D

X
i

ðSz
i Þ

2
; ð1Þ

where i denotes the ith unit cell containing two spin one (associated

to the two layers, l = 1,2, that we call A and B) and Jð1Þ1 and Jð2Þ1 are the
near neighbor intralayer exchanges on lattice A and B respectively,
J2 is the next near neighbor intralayer exchange in each layer and J?
is the interlayer exchange interaction. We will be interested mainly

in the case Jð1Þ1 ¼ Jð2Þ1 � J1, but we will present the general expres-

sions which could be of interest to some readers. Jð2Þ1 ¼ 0 corre-
sponds to a square lattice spin system with a local impurity spin
attached to each lattice, i.e. a Kondo necklace model with XY
exchange interaction [13].

This model for spin ½, Jð1Þ1 ¼ Jð2Þ1 � J1, J2 = 0 and D = 0 was studied
by Stoudemire et al. [14], using quantum Monte Carlo simulations.
They have found that the model exhibits a quantum phase transi-
tion at a critical coupling ratio gc ¼ J?=J1 ¼ 5:46, between a low g-
phase with long-range transverse antiferromagnetic order to a
large g magnetic disordered phase.

For large values of the anisotropy parameter D in Hamiltonian
(1) the system is in a magnetically disordered phase. The aniso-
tropy term forces each spin to be predominantly in the nonmag-
netic state Sz

n ¼ 0
�� �

and there is a finite gap to spin excitations.
Decreasing D, the energy gap decreases and goes to zero at a crit-
ical DC, where a quantum phase transition to a ordered phase
(depending on the values of the parameters g and a, where a =
J2/J1) takes place [15,16]. In the classical model with D = 0, the
interlayer coupling J? does not introduce frustration and then does
not affect the classical ground state. In the quantum case, as men-
tioned before, the Néel order disappears above a critical value of J?
giving rise to a non-magnetic phase.

The outline of the paper is as follows: In Sec. II we introduce the
SU(3) Schwinger boson formalism in a mean field approximation.
In Sec. III we present results of the calculations using this tech-
nique. In Sec. IV we calculate the Kosterlitz-Thouless transition
temperature for D = 0 using a self consistent harmonic approxima-
tion, and finally in Sec. IV we present our conclusions.

2. SU(3) Schwinger boson formalism

Papanicolaou [17] has shown that the standard spin wave the-
ory is not appropriate to treat spin one Hamiltonians which pre-
sent magnetically disordered phase such as the Hamiltonian with
easy plane single ion anisotropy. To overcome this problem, he
proposed the SU(3) Schwinger boson theory, which is a generaliza-
tion of the SU(2) representation. This formalism has also been
called flavor wave theory in the literature.

In the SU(3) Schwinger boson representation the spin operators
are replaced by three species of bosons via the relation [15,16]

Sx ¼ �iðtþy tz � tþz tyÞ; Sy ¼ �iðtþz tx � tþx tzÞ; Sz ¼ �iðtþx ty � tþy txÞ;
ð2Þ

with the constraint

tþx tx þ tþy ty þ tþz tz ¼ 1: ð3Þ

To study magnetically disordered phases it is convenient to
introduce another two bosonic operators u+ and d+ given by [15]

uþ ¼ � 1ffiffiffi
2

p tþx þ itþy
� �

; dþ ¼ 1ffiffiffi
2

p tþx � itþy
� �

: ð4Þ

we have

1j i ¼ uþ vj i; 0j i ¼ tþz vj i; �1j i ¼ dþ vj i; ð5Þ
where vj i is the vacuum state and nj i are eigenstates of Sz. The con-
straint (3) can then be written as uþuþ dþdþ tþz tz ¼ 1. The spin
operators are now given by

Sþ ¼
ffiffiffi
2

p
ðtþz dþ uþtzÞ; S� ¼

ffiffiffi
2

p
ðdþtz þ tþz uÞ; Sz ¼ uþu� dþd:

ð6Þ
One of the advantages of the Schwinger boson theory is that it can
be used in the ordered and disordered phases. In this section we
will be interested in the disordered phase, where most of the spins
are in the Sz ¼ 0 state. In this case, the tz bosons are condensate
and we can take < tz >¼< tþz >¼ t: Substituting (6) into the
Hamiltonian (1), we obtain:
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A temperature-dependent chemical potential lr is introduced
to impose the local constraint S2r ¼ SðSþ 1Þ ¼ 2. In the mean-field
approach, we replace the local parameter lr by a single parameter
l (which plays the role of a Lagrange parameter).

We Fourier transform the operators u and d independently on
each layer A and B,

urn ¼
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2
N

r X
k
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ffiffiffiffi
2
N

r X
k

eik:rm ~uk; ð8Þ

where rn 2 A, rm 2 B, with similar expressions for the d operator.
The Fourier transformed Hamiltonian is:
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where

f k ¼ 4t2ðJð1Þ1 ck þ J2~ckÞ ; gk ¼ 4t2ðJð2Þ1 ck þ J2~ckÞ;
h ¼ t2J?; ck ¼ 0:5ðcos kx þ cos kyÞ; ~ck ¼ cos kx cos ky: ð10Þ
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