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Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic,
vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY
interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs
potential and the set of equations of state are derived, from which all thermodynamic functions are

self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for
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arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some
parameters of interaction potential and electron concentration corresponding to antiferromagnetic
phase, the existence of negative thermal expansion coefficient is predicted.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Thermodynamics of solids with magnetoelastic couplings is a
subject of extensive interest of solid state physicists since many
years in its various aspects [1-41]. The magnetoelastic interactions
are responsible for such effects as the magnetostriction [33,34,36]
and piezomagnetism, which are important from the point of view
of application. As another direct consequence of the presence of
magnetoelastic coupling, one can mention the pressure influence
on the magnetic phase transition temperature, which has been dis-
cussed in numerous works [2,17,24-27,32,42,43]|. The studies
involve both model systems and specific materials, among which
a particularly important class of magnetic semiconductors can be
mentioned [44-51]. Moreover, the contemporarily studied
magneto-caloric materials also essentially rely on the existence
of the coupling between the crystalline lattice and the magnetic
subsystem [28,30,42,43,52], which influences the vital parameters
of these materials.
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In a common approach, the magnetoelastic coupling arises from
the fact that the magnetic exchange integral between magnetic
moments depends on their mutual distance [1,5-8,13,15,16,21,22
,27,46,31,40,41,53], which makes the magnetic energy volume-
dependent. On the other hand, the volume is an indispensable
parameter occurring in other, non-magnetic, parts of the total
energy, as for instance, the elastic potential energy, vibrational
energy, as well as the electronic one.

For the system in stable equilibrium, the total energy must take
the minimum value. This can be achieved when the volume and
magnetization of the system are treated as variational parameters,
whereas the external pressure, magnetic field and temperature are
independent and fixed variables. The variational approach leads to
the set of equations of state in which the volume and magnetiza-
tion are interrelated and determined by the rest of independent
variables. Thus, the influence of the external pressure on the mag-
netic variational parameter (magnetization) can be manifested, in
addition to the expected change of the volume. On the other hand,
the external magnetic field influences, via magnetic energy, the
volume of the system, in addition to the expected change of the
magnetization.

In our previous papers [40,41], the thermodynamic model for
the magnetoelastic couplings was presented, for the simplest case
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when the magnetic interaction between localized spins was of
Heisenberg type. The energy of itinerant electrons was not consid-
ered in that approach, thus restricting the model to magnetic insu-
lators. However, the energy of electron subsystem is important in
such systems as metals, being responsible for the metallic bonds
and contributing to the elastic properties. On the other hand, the
presence of electron gas enables the long-range Ruderman-Kittel-
Kasuya-Yosida (RKKY) indirect interaction between localized spins
[54-56]. The exchange interaction in RKKY model is oscillating vs.
distance, and its amplitude is volume-dependent. Thus, in a natural
way it is sensitive to the volume deformation.

Since up to now studies of magnetoelastic properties with RKKY
interaction included seem to be rather unexploited area, the aim of
the present paper is to fill the existing gap. We will make use of the
underlying methodology developed in our previous paper [40], and
extend the approach by taking into account the itinerant electron
energy in Hartree-Fock approximation. Then, the long-range RKKY
interaction will be included in addition to the nearest-neighbour
(NN) direct Heisenberg interaction. Thus, in the present model
the magnetoelastic couplings have two sources: the volume
dependence of the NN Heisenberg exchange integral, as well as
the long-range RKKY interaction. In addition, when the external
magnetic field is present, the effective gyromagnetic factor in the
RKKY Hamiltonian occurs to be volume-dependent [57]. In our
opinion, all these features make the present model interesting
enough and much more complete than in the previous approach
[40], since all essential energy contributions to the total Gibbs
energy are now taken into account.

The paper is organized as follows: in the next, theoretical, sec-
tion the formalism will be presented. It contains a self-consistent
thermodynamic methodology developed for the complex systems
with many variables, including derivation of the generalized Gibbs
potential and the equations of state. Some complementary formu-
las are placed in the Appendix. In the third section the exemplary
numerical results will be presented in figures and discussed. They
concern calculation of various thermodynamic parameters in the
presence of magnetoelastic coupling. The calculations are per-
formed for a model FCC lattice with NN and RKKY interaction. A
comparison of the results for different electron concentrations,
which correspond to the existence of ferromagnetic or antiferro-
magnetic phases, is made there. In the last section, the paper will
be summarized and the conclusions will be drawn.

2. Theoretical model
The Gibbs free energy of a system is assumed in the form of:
G:F£+FD+Fel+pV+Gm7 (1)

where F, is the elastic (static) Helmholtz energy, Fp is the vibra-
tional (thermal) Helmholtz energy in the Debye approximation,
F¢ is the electronic Helmholtz energy in the Hartree-Fock approxi-
mation, p is the external pressure, V-volume of the system, and G,
is the Gibbs energy of magnetic subsystem with RKKY interaction.
These energy components will be presented below.

2.1. The elastic (static) subsystem

The elastic energy F, can be found on the basis of the Morse
potential [58-60]. Considering the atomic pairs, where one atom
stays in the centre of the system of coordinates and the second
atom is situated on the k-th coordination sphere of radius ry, the
potential energy is given by:

U(re) = D(1 — e~*rro)/m)?, 2)

The pair-potential contains three fitting parameters: potential
depth D, dimensionless asymmetry parameter o« and the distance
ro where the potential has its minimum.

We will assume that for the crystals with cubic symmetry the
radius of k-th coordination sphere, 1, can be expressed in terms
of the isotropic volume deformation &, namely:

re =reo(1+2)"3, (3)
where 1y is the radius of a non-deformed sphere and the isotropic
volume deformation ¢ is defined by the equation:

V:Vo(l+8):%ag(1+8). (4)

In Eq. (4), Vo =V(p =0,H? = 0,T = 0) is the volume of a non-
deformed system (NDS) for ¢ = 0, which is assumed at pressure
p = 0, magnetic field H* = 0 and temperature T = 0. In the same
formula, N is the number of atomic sites, zo stands for the number
of atoms per elementary cell, and the lattice constant of a non-
deformed cubic cell is denoted by ao.

It is convenient to use the pair-potential energy after shifting it
by a constant value, U(ryp), in order to set zero Helmholtz energy
F.(¢ = 0) =0 for a non-deformed crystal. The total elastic energy
can be written as a sum over all the interacting pairs. For isotropic
system the sum can be conveniently performed over the coordina-
tion zones with radii ryo and the coordination numbers z,. Finally,
the elastic energy can be presented in the form of [40]
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where the nearest neighbour normalized distance, r10/ro, can be
found from the minimum conditions for the total Gibbs energy of
a non-deformed crystal, whereas ryo/a, ratios and the coordination
numbers z, are characteristic of a given crystallographic structure
and can be found numerically. We have also introduced the coeffi-
cient x relating the lattice constant and NN distance of a non-
deformed lattice, namely ao = xry o. This coefficient is characteristic
of a given lattice. For instance, for FCC structure x = v/2, whereas
Zo = 4. Thus, the expression (5) presents elastic energy for arbitrary
isotropic deformation ¢ with the assumption that F,(¢ = 0) = 0.

The change of the elastic energy vs. volume is a source of elastic
pressure:
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This pressure should be taken into account together with other
pressure contributions keeping the system in equilibrium.

2.2. The vibrational (Debye) subsystem

The vibrational energy is taken in the Debye approximation and
for the arbitrary temperature T can be presented as [61]

9 o 1y
Fp=N ngTD—F?)kBT ln(l—e D)_BkBT%/O ev — 1
where y, = Tp/T and Tp is the Debye temperature.
The Debye temperature is volume-dependent and can be
expressed in the approximate form [62]
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