
Accepted Manuscript

Investigation of structural, morphological and electromagnetic properties of $Mg_{0.25}Mn_{0.25}Zn_{0.5-x}Sr_xFe_2O_4$ Ferrites

Md.D. Rahaman, Tania Nusrat, Rumana Maleque, A.K.M. Akther Hossain

PII:	S0304-8853(17)30977-0
DOI:	https://doi.org/10.1016/j.jmmm.2017.11.066
Reference:	MAGMA 63406
To appear in:	Journal of Magnetism and Magnetic Materials
Received Date:	25 March 2017
Revised Date:	12 September 2017
Accepted Date:	15 November 2017

Please cite this article as: Md.D. Rahaman, T. Nusrat, R. Maleque, A.K.M. Akther Hossain, Investigation of structural, morphological and electromagnetic properties of Mg_{0.25}Mn_{0.25}Zn_{0.5-x}Sr_xFe₂O₄ Ferrites, *Journal of Magnetism and Magnetic Materials* (2017), doi: https://doi.org/10.1016/j.jmmm.2017.11.066

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Investigation of structural, morphological and electromagnetic properties of Mg_{0.25}Mn_{0.25}Zn_{0.5-x}Sr_xFe₂O₄ Ferrites

Md. D. Rahaman^{a,*)}, Tania Nusrat^{a)}, Rumana Maleque^{a)} and A.K.M. Akther Hossain^{b)}

^{a)} Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh ^{b)} Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh

Abstract

Polycrystalline Mg_{0.25}Mn_{0.25}Zn_{0.5-x}Sr_xFe₂O₄ ($0 \le x \le 0.20$) ferrites were synthesized using the solid state reaction sintering at 1373K and 1473K for 4h. The XRD patterns revealed the formation of single phase cubic spinel with Sr₂FeO₄ and SrFe₁₂O₁₉ as impurity phases. The decrement in the lattice parameter for Sr^{2+} substituted samples is attributed to the difference in ionic radii of cations. The crystallite size decreases with increase in Sr²⁺ content. Low frequency dielectric dispersion is attributed due to the Maxwell-Wagner interfacial polarization. The appearance of the peak in dielectric loss spectrum for x = 0.15 and 0.20 at 1373K and x = 0.20 at 1473K suggests the presence of relaxing dipoles. The loss peak shifts towards lower frequency side with Sr^{2+} content at 1373K which is due to the strengthening of dipole-dipole interactions. The complex impedance spectra clearly revealed that the both grain and grain boundary effects on the electrical properties. A complex electric modulus spectrum indicates that a non-Debye type of conductivity relaxation exists. The saturation magnetization and remanence gradually decreases with Sr^{2+} substitution which may be due to the existence of non-magnetic phase in the between the magnetic particles and the substitution of Zn^{2+} cation in space $Mg_{0.25}Mn_{0.25}Zn_{0.5}Fe_2O_4$ ferrite lattice by Sr^{2+} content. The permeability decreases significantly while the cut-off frequency increases with the Sr²⁺ content at 1373K and decreases at 1473K, obeying the Snoek's law. The decrease in permeability with Sr²⁺ content is attributed due to the decrease in magnetization because non-magnetic ions weaken the inter-site exchange interaction.

Download English Version:

https://daneshyari.com/en/article/8153999

Download Persian Version:

https://daneshyari.com/article/8153999

Daneshyari.com