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a b s t r a c t

To predict regional-scale winter wheat yield, we developed a crop model and data assimilation frame-
work that assimilated leaf area index (LAI) derived from Landsat TM and MODIS data into the WOFOST
crop growth model. We measured LAI during seven phenological phases in two agricultural cities in
China’s Hebei Province. To reduce cloud contamination, we applied Savitzky–Golay (S–G) filtering to
the MODIS LAI products to obtain a filtered LAI. We then regressed field-measured LAI on Landsat TM
vegetation indices to derive multi-temporal TM LAIs. We developed a nonlinear method to adjust LAI by
accounting for the scale mismatch between the remotely sensed data and the model’s state variables.
The TM LAI and scale-adjusted LAI datasets were assimilated into the WOFOST model to allow evalua-
tion of the yield estimation accuracy. We constructed a four-dimensional variational data assimilation
(4DVar) cost function to account for the observations and model errors during key phenological stages.
We used the shuffled complex evolution–University of Arizona algorithm to minimize the 4DVar cost
function between the remotely sensed and modeled LAI and to optimize two important WOFOST param-
eters. Finally, we simulated winter wheat yield in a 1-km grid for cells with at least 50% of their area
occupied by winter wheat using the optimized WOFOST, and aggregated the results at a regional scale.
The scale adjustment substantially improved the accuracy of regional wheat yield predictions (R2 = 0.48;
RMSE = 151.92 kg ha−1) compared with the unassimilated results (R2 = 0.23; RMSE = 373.6 kg ha−1) and the
TM LAI results (R2 = 0.27; RMSE = 191.6 kg ha−1). Thus, the assimilation performance depends strongly on
the LAI retrieval accuracy and the scaling correction. Our research provides a scheme to employ remotely
sensed data, ground-measured data, and a crop growth model to improve regional crop yield estimates.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Climate fluctuations and reductions in the area of cultivated
land have increasingly threatened the wheat crop of China, the
world’s second-largest wheat producer (FAO, 2012), creating a
major national concern over food security. Winter wheat comprises
about 85% of China’s total summer grain production, Therefore,
accurate regional monitoring of wheat growth and yield predic-
tion have become crucial for national food security and sustainable
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agricultural development in China. However, most yield-prediction
methods still depend on conventional techniques, including pre-
dictions from agro-meteorological models and empirical statistical
regression models between spectral vegetation indices and field-
measured yields. One of the main drawbacks of such empirical
regression models for estimating crop yields is that the models are
only applicable for specific crop cultivars, crop growth stages, or
certain geographical regions (Doraiswamy et al., 2003; Fang et al.,
2011).

In contrast, process-oriented crop simulation models based
on mathematical descriptions of key physical and physiological
processes offer powerful tools to simulate the physiological devel-
opment, growth, and yield of a given crop based on the interactions
among environmental characteristics such as the climate, crop
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management, soil conditions, and plant physiological processes
such as photosynthesis and respiration. Several previous studies
have confirmed that such crop growth models can be success-
fully applied to crop yield prediction at a field scale (Jégo et al.,
2012; Moulin et al., 1998). However, their practical application at a
regional scale is restricted by uncertainties in the model’s structure
and processes, and especially uncertainties in the input parameters
and initial conditions of the model. Therefore, there is increasing
interest in providing better estimates of model state variables and
input parameters so as to improve the model’s ability to simulate
crop growth (Dorigo et al., 2007).

Remotely sensed data offers strong advantages over other mon-
itoring techniques by providing a timely, synoptic, and up-to-date
overview of actual crop growing conditions over large areas at mul-
tiple stages during the growing season, and the data can be utilized
in conjunction with crop models to improve prediction of crop
yields at a range of spatial scales (Liang and Qin 2008). Furthermore,
remotely sensed data can be used to complement crop model sim-
ulation results under situations that are not accounted for by the
model (de Wit et al., 2012). Thus, data assimilation, an approach
that incorporates field or other observations into dynamic mecha-
nistic models, can produce more accurate estimates of model input
parameters and state variables, and this approach has increasingly
been used for crop growth monitoring and yield prediction, with
considerable success (Curnel et al., 2011; Dente et al., 2008; de Wit
and van Diepen, 2007; de Wit et al., 2012; Fang et al., 2008, 2011;
Ma et al., 2013a; Tian et al., 2013; Wang et al., 2013).

It is widely acknowledged that regional crop yield estimates
using crop models can be improved by assimilating the val-
ues of biophysical variables derived from remotely sensed data
obtained during the growing season. There are two overall groups
of strategies for data assimilation: variational assimilation algo-
rithms and sequential algorithms (Liang and Qin 2008). The main
difference between the two groups is that each subsequent obser-
vation for sequential assimilation will influence the nature of
the change from the current state of the model; in contrast,
variational assimilation adjusts the estimation using all of the
available observations throughout the assimilation window. Vari-
ational assimilation offers the advantage of using a larger dataset
to improve the precision of each estimation (Curnel et al., 2011;
Liang and Qin 2008). The variational methods start by constructing
a cost function with respect to the control variables, which com-
prise state variables and model parameters that must be estimated
for the system simulation.

Several variational assimilation schemes with different degrees
of complexity and model integration have been developed and
evaluated during the last decade, and the results suggested that
they have tremendous potential for predicting regional crop
yield. Curnel et al. (2011) compared a variational algorithm with
a sequential algorithm (the ensemble Kalman filter: EnKF) to
estimate wheat yield, and found that the variational algorithm
achieved better accuracy. Fang et al. (2011) integrated the CERES-
Maize model with the MODIS LAI products using a simplified
variational method based on the Powell optimization algorithm to
predict corn yield in Indiana, United States. They found that the
predicted corn yield agreed well with the USDA statistical data
for most of the study area. Dente et al. (2008) assimilated the LAI
values derived from ENVISAT ASAR and MERIS data into the CERES-
Wheat model using a variational algorithm to improve prediction
of the regional wheat yield. This process reinitialized the model by
optimizing the input parameters, which required good temporal
agreement between the LAI values simulated by the crop model and
estimates derived from remote-sensing data. Xu et al. (2011) used
the shuffled complex evolution–University of Arizona (SCE–UA)
algorithm to assimilate the phenological information derived from
the MODIS LAI trajectory into the WOFOST model after optimizing

the emergence date and minimum temperature for growth, and
improved the prediction of regional winter wheat yield.

Due to the variability of land cover and the complexity of the
crop planting pattern in agricultural landscapes, the scale mis-
match between the remotely sensed observations and the state
variables of crop growth models remains a difficult challenge. In
most of the reported approaches for agricultural data assimila-
tion frameworks, the scale mismatch between pixel-scale remotely
sensed observational data and the single-point scale of the crop
models has not been fully taken into account, and this can greatly
decrease the performance of the data assimilation. To support an
agricultural data assimilation system, remote sensing must com-
bine short revisit intervals with large geographical coverage. Most
widely used satellite sensors provide low spatial resolution (e.g.,
the AVHRR, MODIS, MERIS, and SPOT Vegetation instruments).
Although these sensors have the advantage of capturing crop phe-
nological development and variability for pixels that contain a
high proportion of a single crop due to their high temporal res-
olution, their coarse spatial resolution increases the intra-pixel
heterogeneity. Thus, most researchers have only investigated data
assimilation practices in relatively homogeneous agricultural areas
to reduce these errors (Bastiaanssen, 2003; Fang et al., 2008; Ma
et al., 2008; Mo et al., 2005; Xu et al., 2011). Furthermore, the
retrieval algorithm for MODIS LAI products was designed for global-
scale applications with all vegetation types, not to account for
specific agricultural crops, and generally tends to underestimate
crop LAI (Duveiller et al., 2013; Fang et al., 2012). Finally, there is
a mismatch between the nature of the remotely sensed LAI values
and the LAI simulated by crop models. For example, the LAI used by
the WOFOST model is actually a “green area index” (GAI), since it
includes the contributions of stems and storage organs (Duveiller
et al., 2011b; de Wit et al., 2012). When LAI is required for specific
crop monitoring and applications, several studies have improved
retrieval performance by using a filtering procedure (e.g., a canopy
structural dynamics model) to generate a time series for crop LAI
based on the 250-m-scale daily reflectance data and thermal data
during several phenological stages (Duveiller et al., 2012, 2013).

The scale mismatch between remotely sensed observations and
a crop model’s state variables can be largely overcome by using
instruments with high spatial resolution and wide swath coverage,
such as the Disaster Monitoring Constellation and the forthcom-
ing Sentinel 2. Unfortunately, a series of cloud-free images with
fine spatial resolution can seldom be acquired, because the time
when the crop canopy is growing most actively coincides with the
cloudy and rainy season in many parts of the world. Furthermore,
modeling the spatial heterogeneity with two widely used meth-
ods (correcting the scaling bias and downscaling) can be a complex
issue, requiring rigorous approximations and a priori knowledge
that might not be readily available for operational applications
(Duveiller et al., 2011a). One potential solution for the scale mis-
match is to combine the phenological information from sensors
with low spatial resolution but high revisit frequency (e.g., MODIS)
and relatively accurate LAI values derived from medium-resolution
images (e.g., Landsat TM) to produce a scale-adjusted LAI trajectory
during the crop growing season.

Intra-pixel heterogeneity is also a challenging issue when con-
ducting data assimilation using remote-sensing data with coarse
spatial resolution, particularly over complex agricultural land-
scapes. The analysis can be focused on a subset of the pixels that
contain a high fraction of a single crop instead of using all of the
pixels (de Wit et al., 2012). Becker-Reshef et al. (2010) used a mask
based on the percentage of a pixel covered by the target crop as a
filter to identify the purest winter wheat pixels at a county level,
and used the mask to obtain high-accuracy predictions of regional
wheat yields. A related problem in an agricultural data assimilation
framework is that crop growth models are often specific to a given
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