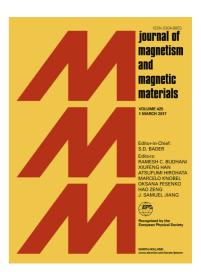
Accepted Manuscript

Research articles

The effect of cooling rate on the phase formation and magnetocaloric properties in $La_{0.6}Ce_{0.4}Fe_{11.0}Si_{2.0}$ alloys

Jian Yang, Yanyan Shao, Zaixin Feng, Jian Liu


PII: S0304-8853(17)33030-5

DOI: https://doi.org/10.1016/j.jmmm.2017.11.059

Reference: MAGMA 63399

To appear in: Journal of Magnetism and Magnetic Materials

Received Date: 25 September 2017 Revised Date: 15 November 2017 Accepted Date: 15 November 2017

Please cite this article as: J. Yang, Y. Shao, Z. Feng, J. Liu, The effect of cooling rate on the phase formation and magnetocaloric properties in La_{0.6}Ce_{0.4}Fe_{11.0}Si_{2.0} alloys, *Journal of Magnetism and Magnetic Materials* (2017), doi: https://doi.org/10.1016/j.jmmm.2017.11.059

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

The effect of cooling rate on the phase formation and magnetocaloric

properties in La_{0.6}Ce_{0.4}Fe_{11.0}Si_{2.0} alloys

Jian Yang^{a,b,c}, Yanyan Shao^{b,c}, Zaixin Feng^a, Jian Liu^{b,c*}

^aSchool of Material Science and Engineering, North University of China, Taiyuan 030051, China

^bKey Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and

Engineering, CAS, Ningbo 315201, China

^cZhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo

Institute of Material Technology and Engineering, CAS, Ningbo 315201, China

* Corresponding author: liujian@nimte.ac.cn

Abstract: In this work, the microstructure, phase formation behavior of the NaZn₁₃-type 1:13

phase and related magnetocaloric effect have been investigated in La_{0.6}Ce_{0.4}Fe_{11.0}Si_{2.0} as-cast bulk

and melt-spun ribbons with different cooling rates. A multi-phase structure consisting of 1:13,

α-Fe and La-rich phases is observed in the induction-melted sample with slow cooling. By fast

cooling in the melt spinning processing, the La-rich phase can be almost eliminated and thus 1:13

phases with volume fraction as high as 74.4 % directly form in the absence of further heat

treatment. The resulting maximum magnetic entropy change of 3.1 J/kgK in 2 T field appears at its

Curie temperature of 210 K for the La_{0.6}Ce_{0.4}Fe_{11.0}Si_{2.0} ribbon prepared in 25 m/s.

Keywords: La-Ce-Fe-Si, fast cooling, magnetic entropy change

1

Download English Version:

https://daneshyari.com/en/article/8154015

Download Persian Version:

https://daneshyari.com/article/8154015

Daneshyari.com