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a b s t r a c t

In this paper, a calculation model is proposed to measure magnetocaloric effect (MCE) and relative cool-
ing power (RCP) in composites based on magnetic materials underscoring a giant MCE at room temper-
ature. The two composite materials targeted are Gd-Gd5Si2Ge2 and MnAs-Mn1þdAs0:9Sb0:1 due to their
high magnetic entropy change DSM over 270–300 K and 280–320 K.
Our selected composites could give a larger RCP value among existing magnetocaloric materials for

magnetic refrigeration in the temperature range of 280–300 K which is desirable for ideal Ericsson-
cycle magnetic refrigeration. The excellent magnetocaloric properties of these two magnetic composites
make them attractive for active magnetic refrigeration at room temperature.

� 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetic refrigeration is a clean technology that uses a mag-
netic field to change the magnetic entropy of a material (the mag-
netocaloric effect, MCE), thus allowing the material to serve as a
refrigerant. This technology provides a higher cooling efficiency
(about 20–30%) than conventional gas compression techniques [1].

Many efforts have been spent both theoretically and experi-
mentally in order to formulate new concepts of Active Magnetic
Refrigeration (AMR) which permit magnetic refrigeration at room
temperature (see as example Ref. [2]). The aim being to substitute
the conventional refrigeration releasing greenhouse gases by a new

technology preserving the environment and saving the energy
consumption.

Producing a magnetocaloric material with a large magnetic
entropy change DSM over a wide temperature range, i.e., a large
refrigerant capacity, is of capital interest for magnetic refrigeration
applications. For ideal Ericsson cycle based magnetic refrigeration,
a magnetocaloric material should possess a constant magnetic
entropy change DSM in the refrigeration temperature range [3].
Our ultimate objective is to work out a model providing magne-
tocaloric effect (MCE) and relative cooling power (RCP) calculations
in magnetic composites materials. Indeed, several theoretical
approaches and simulations have been used to predict and
describe the MCE in ideal materials (see as examples Refs. [4];
[5]) while experimentally, since the discovery of giant MCE in Gd5-
Si2Ge2 in 1997 [6], a vast variety of materials has been synthesized
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and the MCE field surged up. This progress covered pure magnetic
elements and their solid solution alloys such as 4f elements (Gd,
Nd, . . .), binary and intermetallic compounds such as R-M2 materi-
als (R = Dy, Ho, Er; M = Co, Al. . .), Gd5(Si1-xGex)4 and related mate-
rials that exhibit giant MCE, families of Mn-based compounds, La
(Fe13�xMx)-based compounds and manganites (La1-xMx) MnO3

where M = Na, Ag with quite important MCE (for a review see
Ref. [7]).

For illustration, we choose the two composites Gd-Gd5Si2Ge2
and MnAs- Mn1þdAs0:9Sb0:1 because of their high DSM over 270–
300 K and 280–320 K.

The paper is organized as follows: in Section 2, we introduce the
model by giving the spin Hamiltonian and partition function. Then
in Section 3, we calculate relevant thermodynamic parameters
influencing the MCE. Section 4 is devoted to numerical results
and discussions. Finally, we give conclusion and outlook.

2. Model

We first consider the Heisenberg Hamiltonian of a ferromag-
netic asingle-system given by

Ha ¼ �Ja
X
hi;ji

~Si;a:~Sj;a � glBl0H0 �
X
i

S z
i;a ð1Þ

where Ja is the exchange interaction constant between nearest-

neighbors (Ja > 0), ~Si;a (respectively ~Sj;a) are the spin operators act-
ing on the site i (respectively j) and H0 is the applied magnetic field
parallel to the z-axis of spin. Here, g is the Landé factor, lB is the
Bohr magneton and l0 is magnetic permeability.

In order to solve Eq. (1), we make an approximation by defining
an effective molecular field at the

ith site : BW ¼ 1
glB

X
j2nn

hSjiJij ð2Þ

Therefore, the exchange interaction is replaced by the effective
molecular field BW produced by the neighboring spins. We are now
able to treat this problem as if the system were a simple paramag-
net placed in a magnetic field B + BW. The effective Hamiltonian
can now be written as:

Ha ¼ �glB

X
i

Si;a B0 þ BWð Þ ð3Þ

The assumption supporting this approach is that all magnetic
ions experience the same molecular field. However, this may be
rather questionable, particularly at temperatures close to a mag-
netic phase transition. For a ferromagnet, the molecular field will
act so to align neighboring magnetic moments. This is because
the dominant exchange interactions are positive. Since the molec-
ular field measures the effect of the system ordering, we can
assume that BW = k M where:

k ¼ zJ

ðglBÞ2n
ð4Þ

Thus, k characterizes the strength of the molecular field as a
function of the magnetization (for a ferromagnet, k > 0). Here z
and n denote respectively the coordination number and the vol-
ume spin concentration. Both are related to the crystallographic
structure of the material.

In this context, our Hamiltonian may be equally rewritten as:

Ha ¼
X
i

Ha;i ð5Þ

where Hai ¼ �glBSiaðB0 þ BWÞ whose the eigenvalues are given by
Ei ¼ �glBmiðB0 þ BWÞ where �S �mi � S.

Since all individual Hamiltonians Hi, a commute between them,
the partition function becomes:

Za ¼
Y
i

Zi;a ð6Þ

where

Zi;a ¼
X
fmig

ebglBmiðB0þBW Þ ¼
Xmi¼þS

mi¼�S

eymi ð7Þ

y ¼ bglBðB0 þ BWÞ ¼ bglBðB0 þ kMÞ; b = 1/kBT, kB being the Boltz-
mann constant.

By performing the Za calculation, we deduce the Helmholtz free
energy for n spins per unit volume using the expression Fa = �n kB
ln(Za). Thus, the magnetization, the magnetic entropy per unit vol-
ume and the magnetic specific heat are expressed respectively by:

MðB; TÞ ¼ MSBSðyÞ ð8Þ

SM ¼ nkB ln
sh 1þ 1

2S

� �
y

sh y
2S

� yBSðyÞ
� �

ð9Þ

CM ¼ �nkBy2
ð1þ 1

2SÞ
2

sh 2Sþ1
2S

� �
y

� �2 � 1
2S

� �2
sh 1

2S

� �
y

� �2
" #

ð10Þ

where Bs(y) is the Brillouin function and
M<ce:inf>s < =ce : inf >¼ nglBS is the saturation magnetization. Note
that in absence of both exchange (paramagnetic system) and exter-
nal magnetic field, one finds that the entropy of the assembly of
magnetic moments has its maximum at M = 0, and its value is SM
(0) = nkB ln (2S + 1), corresponding to the upper limit for the
entropy associated with the atomic magnetic moments with 2S +
1 discrete levels.

However, in our system where exchange is taken into account,
the Eqs. (8)–(10) contain implicitly the magnetization M making
hard the analytical resolution of the problem.

Thus, in order to overcome this difficulty and perform a numer-
ical resolution, we have developed a computational program sim-
ulating the evolution of these variables with both magnetic field
and temperature for a given set of microscopic parameters such
as exchange interaction or spin size.

3. Thermodynamic study

For the characterization of the magnetocaloric response of a
material, three main parameters can be studied: the isothermal
magnetic entropy change, DSM; the adiabatic temperature change,
DTad; and the relative cooling power, RCP [8]. In order to calculate
these parameters, we start form the Gibbs free energy G which is
expressed in terms of internal energy U, extensive variables
(entropy S and magnetization M) and intensive variables (temper-
ature T and magnetic induction B0) as follows:

GðT; P;BÞ ¼ U þ PV � TS� ~M �~B ð11Þ
Thus:

dG ¼ @G
@T

� �
dT þ @G

@B

� �
dB ¼ �MdB� SMdT ð12Þ

Where:

@

@B
@G
@T

� �
¼ @

@T
@G
@B

� �
ð13Þ

By using Maxwell-Weiss relation [3], we get:

@M
@T

� �
¼ @SM

@B

� �
ð14Þ
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