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Abstract In this paper, numerical solutions of singular initial value problems are obtained by the

Haar wavelet collocation method (HWCM). The HWCM is a numerical method for solving integral

equations, ordinary and partial differential equations. To show the efficiency of the HWCM, some

examples are presented. This method provides a fast convergent series of easily computable

components. The errors of HWCM are also computed. Through this analysis, the solution is found

on the coarse grid points and then converging toward higher accuracy by increasing the level of the

Haar wavelet. Comparisons with exact and existing numerical methods (adomian decomposition

method (ADM) & variational iteration method (VIM)) solutions show that the HWCM is a

powerful numerical method for the solution of the linear and non-linear singular initial value

problems. The Haar wavelet adaptive grid method (HWAGM) based solutions show the excellent

performance for the proposed problems.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years, the studies of singular initial value problems in
the second order ordinary differential equations (ODEs) have

attracted the attention of many mathematicians and physicists.
Many methods including numerical and perturbation methods

have been used to solve such type of problems. The approxi-
mate solutions for these problems were presented by many
researchers for example Wazwaz [1–3] using the ADM and

Yildirim and Ozis [4] using the VIM.
In numerical analysis, classical discretization methods, such

as finite differences, finite elements and spectral elements are
powerful tools for solving differential equations. However, sin-

gularities and step changes often emerge in many phenomena,
such as stress concentration, elastoplasticity, shock wave and
crack. Since small-scale features only exist in a small percent-

age of the solution domain, if one chooses a uniform numerical
grid fine enough to resolve the small-scale characteristics, then
the solution to the equations will be over-resolved in the

majority of the domain. One would like ideally, to have a
dense grid where small-scale structure exists and a sparse grid
where the solution is only composed of large-scale features
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[5–7]. It demands for the usage of non-uniform grids and adap-
tive grids or moving elements to dynamically adapt to the
changes in the solution [8]. That is where wavelets play a role.

Wavelet is called ‘‘numerical microscope’’ in signal and
image processing. It has been 31 years since Morlet proposed
the concept of wavelet analysis to automatically reach the best

trade-off between time and frequency resolution [9]. Later, this
proposition was considered as a generalization of ideas pro-
moted by Haar (1910), Gabor (1946) [10]. Wavelet was in

the air in the numerical analysis community in the early
1990s [11]. Generally, wavelet is used to describe a function
that features compact support; i.e. it is nonzero only on a finite
interval. The representation of a set of time-dependent data on

a wavelet basis leads to a unique structure of information that
is localized simultaneously in the frequency and time domains.
This does not occur in a Fourier representation, where specific

frequencies cannot be associated with a particular time inter-
val, since the basis functions have constant resolution on the
entire domain. A wavelet basis representation originates a set

of wavelet coefficients structured over different levels of reso-
lution. Each coefficient is associated with a resolution level
and a point in the time domain. The coefficients involved in

the lowest-resolution level describe the low-frequency features
of the data spanning over broad time intervals. At the highest
level, the coefficients are associated with highly localized high-
frequency features [12,13]. These desirable advantages draw

sight of researchers to apply wavelets in the resolution of dif-
ferential equations [14–16].

One of the popular families of wavelets is Haar wavelet. Due

to its simplicity, Haar wavelet has become an effective tool for
solving differential equations. The previous work in system
analysis via Haar wavelet was led by Chen and Hsiao [17],

who first derived a Haar operational matrix for the integrals
of the Haar function vector and put the applications for the
Haar analysis into the dynamic systems. Lepik [18–20] applied

the Haar wavelet collocation method for the solution of differ-
ential and integral equations. Bujurke et al. [21–23] presented
the Haar wavelet method to establish the solution of nonlinear
oscillator equations, Stiff systems, regular Sturm–Liouville

problems, etc. Chang and Piau [24], designed the numerical
solution of ordinary differential equations using Haar wavelet
matrices. Islam et al. [25] obtained the numerical solution of

second-order boundary-value problems using the Haar wavelet
collocation method for the different boundary conditions.

The purpose of this paper is to introduce the HWCM as an

alternative to existing methods for solving singular initial value
problems. With this method, the given differential equation
and its related initial conditions are transformed into a recur-
rence equation that finally leads to the solution of a system of

algebraic equations as coefficients of a Haar series solution.
This method is useful to obtain the approximate solutions of
linear and nonlinear singular initial value problems, no need

to linearization or discretization and large computational
work. It has been used to solve effectively, easily and accu-
rately a large class of linear and nonlinear problems with

approximations.
The present work is organized as follows. In Section 2,

Haar wavelet and operational matrix of integration are given.

Method of solution of HWCM is presented in Section 3. In
Section 4 numerical results and error analysis of the test prob-
lems are obtained. Finally conclusion of the proposed work is
discussed in Section 5.

2. Haar wavelet and operational matrix of integration

The scaling function h1ðtÞ for the family of the Haar wavelet is
defined as

h1ðtÞ ¼
1 for t 2 ½0; 1Þ
0 otherwise

�
ð2:1Þ

The Haar wavelet family for t 2 ½0; 1Þ is defined as

hiðtÞ ¼
1 for t 2 k

m
; kþ0:5

m

� �
�1 for t 2 kþ0:5

m
; kþ1

m

� �
0 otherwise

8><
>: ð2:2Þ

where m ¼ 2l; l ¼ 0; 1; . . . ; J; J is the level of resolution; and
k ¼ 0; 1; . . . ;m� 1 is the translation parameter. Maximum

level of resolution is J. The index i in Eq. (2.2) is calculated
using i ¼ mþ kþ 1. In case of minimal values m ¼ 1; k ¼ 0

then i ¼ 2. The maximal value of i is N ¼ 2Jþ1.

Let us define the collocation points tj ¼ j�0:5
N
; j ¼ 1; 2; . . . ;

N, Haar coefficient matrix H i; jð Þ ¼ hiðtjÞ which has the dimen-

sion N�N. For instance, J ¼ 3 ) N ¼ 16, then we have

Hð16;16Þ

¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

1 1 1 1 �1 �1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 �1 �1 �1 �1

1 1 �1 �1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 �1 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 �1 �1

1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 �1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 �1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

We establish an operational matrix for integration via Haar
wavelet. The operational matrix of integration is obtained by

integrating (2.2) is as,

Phi ¼
Z t

0

hiðtÞdt ð2:3Þ

and

Qhi ¼
Z t

0

PhiðtÞdt ð2:4Þ

These integrals can be evaluated by using Eq. (2.2) and they

are given by

PhiðtÞ ¼
t� k

m
for t 2 k

m
; kþ0:5

m

� �
kþ1
m
� t for t 2 kþ0:5

m
; kþ1

m

� �
0 otherwise

8><
>: ð2:5Þ
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