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Abstract An improved drought management must rely on an accurate monitoring and forecasting

of the phenomenon in order to activate appropriate mitigation measures. In this study, several

homogenous Hidden Markov Models (HMMs) were developed to forecast droughts using the

Standardized Precipitation Index, SPI, at short-medium term. Validation of the developed models

was carried out with reference to precipitation series observed in 22 stations located in the upper

Blue Nile river basin. The performance of the HMM was measured using various forecast skill

criteria. Results indicate that Hidden Markov Model provides a fairly good agreement between

observed and forecasted values in terms of the SPI time series on various lead time. Results seem

to confirm the reliability of the proposed models to discriminate between events and non-events

relatively well, thus suggesting the suitability of the proposed procedure as a tool for drought

management and drought early warning.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Drought is considered by many researchers to be the most

complex but least understood of all natural hazards, affecting
more people than any other hazard [1]. Drought is one of the
major weather related disasters which is persisting over months

or years. It can affect large areas and may have serious

environmental, social and economic impacts. Globally, about
22% of the economic damage caused by natural disasters

and 33% of the damage in terms of the number of persons
affected can be attributed to drought [2]. These impacts
depend on the severity, duration, and spatial extent of the

precipitation deficit, as well as the socioeconomic and environ-
mental vulnerability of affected regions [3]. Unlike the effects
of a flood which can be immediately seen and felt, droughts
build up rather slowly, creeping and steadily growing [4].

Droughts are typically classified into four types: meteorologi-
cal, hydrological, agricultural and socioeconomic, and there
are many drought indicators associated with each drought type

[5,6]. Drought forecasting plays an important role in the
mitigation of impacts of drought on water resources systems
and water resources management [6–8].
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From a stochastic point of view, the problem of forecasting
future values of a random variable can be seen as the determi-
nation of the probability density function of future values con-

ditioned by past observations [9]. Yevjevich as reported in [10]
was among the first at attempting a prediction of properties of
droughts using the geometric probability distribution, defining

a drought of k years as k consecutive years when there are no
adequate water resources. Rao and Padmanabhan [11] investi-
gated the stochastic nature of yearly and monthly Palmer’s

drought index (PDI) series to characterize them via valid
stochastic models which may be used to forecast and to
simulate the PDI series. Sen [12] derived exact probability
distribution functions of critical droughts in stationary second

order Markov chains for finite sample lengths on the basis of
the enumeration technique and predicted the possible critical
drought durations that may result from any hydrological

phenomenon. Lohani and Loganathan [13] used PDI in a
non-homogenous Markov chain model to characterize the
stochastic behavior of drought and based on these drought

characterizations an early warning system was used for
drought management [14].

The main objective of this study is to build Hidden Markov

Models (HMMs) for meteorological drought forecasting at
short-medium term. The stochastic models presented in this
study are based on SPI developed by McKee et al. [15] as
drought index because there are a number of advantages arise

from the use of the SPI index [14,16,17]. The primary advan-
tage is that SPI is based on rainfall alone, so that drought
assessment is possible even if other hydro-meteorological mea-

surements are not available. The SPI is also not adversely
affected by topography, it is defined over various timescales
(3, 6, 9, . . ., 72 months) and this allows to use it as short, med-

ium and long-term drought index to describe drought condi-
tions over a range of meteorological, hydrological and
agricultural applications. In particular, analytical expressions

of SPI forecasts are derived as the expectation of future SPI
values conditioned on past monthly precipitation, under the
hypothesis of normally distributed precipitation aggregated
at different timescales k. Validation of the model was carried

out with reference to precipitation series observed in 22 sta-
tions located in the Upper Blue Nile River Basin (UBNRB),
Ethiopia. To the best of our knowledge, the issue on forecast-

ing of meteorological drought using Hidden Markov Model so
far has not been addressed. Some of the other studies about
using of Markov chain models to predict the transition from

a class of severity to another are listed in [18–20]. The
approach presented herein provides not only a stochastic
methodology to forecast the transition probability from a
drought class to another but also the magnitude and duration

of drought event. It is hoped that the proposed approach and
our findings obtained in this study are useful for further
research in the area of drought forecasting.

2. Methods and materials

2.1. Study region and data

The Blue Nile river, which starts its flow from Lake Tana and

ends at the Ethiopian–Sudan border, is the largest tributary of
the Nile river in terms of discharge and annually contributes
60–69% of runoff to the Nile river at Khartoum [21,22]. The

Blue Nile river originates in the highlands of Ethiopia, and
the Upper Blue Nile River Basin (UBNRB) is the part of the
watershed of the Blue Nile river basin which is under the

Ethiopian territory (Fig. 1). The altitude of the UBNRB
ranges from 511 m to 4052 m and the Blue Nile and its tribu-
taries have a general slope toward the northwest, however the

slopes are steeper in the east than in the west and northeast
areas of the UBNRB (Fig. 1).

Forty-eight years (January 1960 to December 2007) of daily

precipitation data from 22 meteorological stations in the upper
Blue Nile basin were used in this study to forecast drought
events. The selected stations represent a good spatial coverage
across the study region (Fig. 1). Daily precipitation records

were first processed in terms of data gaps using neighboring
stations to fill in missing precipitation values and then con-
verted to monthly values and after that homogeneity test

was applied to the data using several homogeneity tests
included absolute and relative homogeneity tests. The precipi-
tation over the Blue Nile basin varies from 1000 mm in the

north-eastern part to 1450–2100 mm over the south-western
part of the sub-basin [23].

The mean annual areal rainfall over the UBNRB, within

the studied period, is 1260 mm as shown in Fig. 2. The rainfall
distribution is highly variable both spatially – decreasing from
the southwest to the east and northeast – and temporally, i.e.
over the yearly seasons. Moreover, as the rainfall over the

UBRNB is highly seasonal, the Blue Nile river also possesses
a strongly-varying seasonal flood regime, whereby over 80%
of the annual discharge occurs during the four months from

July to October. The average annual flow of the Blue Nile at
the Sudan–Ethiopian border is about 48,660 million m3 which
represents more than 40% of Ethiopia’s total surface water

resources [24]. Hence, the UBNRB represents a substantial
water resource for Ethiopia and as well for the downstream
countries Sudan and Egypt.

2.2. Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) is based on an
equi-probability transformation of aggregated monthly precip-

itation into a standard normal variable and recommended by
the World Meteorological Organization as a standard to char-
acterize meteorological droughts [15,25,26]. The calculation of

SPI requires that there are no missing data in the time series
and the data record length is required to be at least 30 years
[27,28]. McKee assumed an aggregated precipitation gamma

distributed and used a maximum likelihood method to
estimate the parameters of the distribution. In the most cases,
the Gamma distribution is the distribution that best models
observed precipitation data. Computation of the SPI involves

the fitting of a gamma probability density function to a given
frequency distribution of precipitation totals for a station
[14,29]. The alpha and beta parameters of the gamma

probability density function are estimated for each station,
for each timescale of interest (1 month, 3 months, 12 months,
48 months, etc.) and for each month of the year.

After estimating coefficient alpha and beta the density of
probability function is integrated with respect to, obtain an
expression for cumulative probability that a certain amount

of rain has been observed for a given month and for a specific
timescale. The cumulative probability is then transformed into
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