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a b s t r a c t

Magnetization of soft-ferromagnetic nano- and microtubes of nanometer-thin walls (a single-widening
rolled-up nanomembranes) is theoretically studied using analytical and numerical approaches including
different stress-induced anisotropies. Within the analytical study, we consider magnetostatic effects
qualitatively, with an effective anisotropy, while they are fully treated in the micromagnetic simulations
(limited to the tubes of submicrometer diameters however). Basic types of the periodic ordering have
been established and their presence in nanotubes of polycrystalline Permalloy and cobalt has been
verified within the simulations. The domain structure is basically determined by a material-deposition-
induced helical stress or a cooling-induced axial stress via the volume magnetostriction while it is in-
fluenced by the distribution of magnetic charges as well. Also, it is dependent on the initial state of the
magnetization process.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ordering in a small ferromagnetic tube with very thin wall
compared to its radius is difficult to anticipate since that structure
shares features of the thin film and magnetic wire relevant to the
magnetostatics (a radial anisotropy of the hard-axis type and easy
long axis of the tube) with a strong stress-driven anisotropy de-
pendent on fabrication conditions. Because of complexity of the
anisotropy, there are many metastable states of the magnetization,
thus, the ordering is sensitive to initial conditions and external
factors. On the other hand, the tube is a very important geometry
among magnetic nano- and micro-systems since tubular coverings
enable modifications of magneto-transport; GMI effect, and mag-
neto-optical properties of wires and fibers to be utilized for sen-
sing applications [1–3]. Also, magnetic microtube can serve as a
sensing pipe for magnetic nanofluids [4].

Techniques of manufacturing single-crystalline and poly-
crystalline micro- and nanotubes of magnetic materials include
electrochemical and chemical routes [2,5–7]. Highly efficient pro-
duction methods are developed for magnetic microtubes of a thin
wall. They are produced with sputtering in the form of microwire
or microfiber coverings or rolled-up membranes of nanometer
thicknesses [8,9]. Note that an outer shell of the amorphous glass-
coated magnetic microwire can be considered as a tube as well,
albeit it strongly interacts with the inner core of the wire, (the
glass-coated magnetic microwire is a single-phase system with a
core-shell type magnetic ordering [10]), and its wall is quite thick

relative to the wire radius [11,12]. However, upon glass removal,
the outer shell becomes very thin while the thickness of a domain
wall (DW) that separates it from the inner core increases [13,14].
This is accompanied by a reorganization of the domain structure
and influences the GMI characteristics [15]. With regard to func-
tionalized wires and fibers, there is a need for modeling the dy-
namics of the thin-wall tube magnetization. The first step to do in
order to formulate an effective model is to understand dominant
mechanisms responsible for ordering in the nano- and micro-
tubes without external influences.

In microtubes of very small wall-thickness to radius ratio, the
longitudinal easy-axis anisotropy of the magnetostatic origin is
weaker than in tubes of a thick wall or in wires. Thus, influenced
by the stress-driven anisotropy, the domain magnetization can
strongly deviate from the long-axis direction even in very elon-
gated systems. Moreover, the magnetostatically-induced hard-axis
anisotropy (the hard axis is normal to the tube surface) is strong,
which facilitates in-the-wall ordering (excluding singularities;
vortex and antivortex cores) independent of the stress direction
and sign of the volume magnetostriction. Despite the shape ani-
sotropy is not well defined in the system with an inhomogeneous
magnetization, any efficient analytical approach to establishing
equilibrium states of the tube requires introducing such an effec-
tive anisotropy into the model. Full micromagnetic simulations are
necessary to verify the validity of such a simplification to the na-
notubes while they are not any efficient alternative to the analy-
tical evaluations of the microtube characteristics at present. It is
because, simulating microtubes requires too large computational
resources.

The purpose of the present study is to identify basic
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equilibrium states of thin-wall microtubes and nanotubes includ-
ing longitudinal, transverse, and helical anisotropies. We compare
static analytical and numerical solutions to the Landau–Lifshitz–
Gilbert equation for nanotubes, modeling the magnetostatics ef-
fect with an effective anisotropy or performing full micromagnetic
calculations, respectively. The evaluations are focused on the
polycrystalline tubes of perhaps the most popular magnetic ma-
terials; Co and Py tubes. When exclude the crystalline anisotropy
effect, important differences in ordering of these two materials
follow from different saturation magnetizations. The influence of
other factors (origin of the internal stress, initial state of the
magnetization) on the formation of the magnetic texture is dis-
cussed as well.

In Section 2, a model of the thin-wall nano- and microtube is
formulated, its analytical solutions are pointed out. Section 3 is
devoted to presenting results of micromagnetic simulations of the
process of tube ordering. Conclusions are collected in Section 4.

2. Model

In our analytical approach to study the magnetization of a
polycrystalline or amorphous tube, the LLG equation in 3D is in-
cluded in the form
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Here, ^ ≡ ( )i 1, 0, 0 , (the wire is directed along the x axis), = | |M ms
represents the saturation magnetization, J denotes an exchange
constant, ( γ≡J A M2 /ex s; Aex is called the exchange stiffness while γ
a gyromagnetic factor), β1, β2, and β3 determine the strength of
effective axial, radial, and circumferential anisotropies, respec-
tively. An additional anisotropy in the tube wall is included with
the β4 constant. In the relevant term of the torque, a is a combi-

nation of î and ( − ) +z y y z0, , / 2 2 vectors and | | =a 1.
In order to establish main contributions to the anisotropy

constants, utilizing analogies to the tubes, we adapt elements of
the theory of elasticity of the amorphous and polycrystalline glass-
coated microwires which is well developed [10]. According to this
theory, the internal stress can be created at two production stages;
the solidification of the magnetic material and its cooling that is a
much slower process. The solidification of the magnetic microwire
develops in the radial direction. In the surface layer of the mi-
crowire that can be considered as a tube, it produces equal to each
other axial and circumferential components of the stress while the
relevant radial stress is negligibly small. This kind of stress follows
from a homogeneous shrinking of the inside surface of the tube
compared to the outside surface and we call it a “solidification
stress”, (in the body of the “rapidly-solidified” wire, the relevant
stress is created layer by layer). In the presence of that stress, in
the tubes made of amorphous or polycrystalline materials, the
magnetostriction that is of the volume type only (isotropic) is
expected to equally contribute to the β1 and β3 constants of the
anisotropy.

However, the tube manufacturing is a different process from
the wire production in general. Typically, the magnetic tubes are
formed via rolling-up planar magnetic (created with sputtering or
evaporation) layers or via direct sputtering on a surface of

cylindrical wires. Those methods of the material deposition are
accompanied by another “solidification stress” and a resulting easy
direction in the magnetic layer that is parallel or perpendicular to
the sputtering (evaporation) plane usually. While the rapid-soli-
dification stress is not expected to be strong in a very thin film, the
directed sputtering can result in the creation of a significant ani-
sotropy relevant to β4 constant [16,17]. Note that such an aniso-
tropy can be weakened or completely removed via annealing. That
“helical” anisotropy in a magnetic tube has been modeled pre-
viously in [18].

Another type of the stress can dominate in multi-layered tubes.
Since the thermal expansion is isotropic within the cross-section
of the double-layer tube, for a sufficiently long tube, a difference in
the thermal expansion coefficients of the magnetic and non-
magnetic layers results in equal to each other radial and cir-
cumferential stresses as well as in a much higher axial stress
which are induced during the slow cooling process. Therefore, in
the amorphous or polycrystalline tubes, the “cooling stress” con-
tributions to the constants of the radial and circumferential ani-
sotropies are equal.

Denoting the magnetostatic, solidification, and cooling con-
tributions to the anisotropy constants with the relevant indices;
β β β β= + +( ) ( ) ( )
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1 3 . In particular, it
follows from above formulae that the effective cooling-induced
anisotropy is uniaxial with the anisotropy axis oriented along the
tube. In the limit of infinitely thin tube, the axial contribution to the
shape anisotropy becomes negligible; β β⪢ ≈( ) ( ) 0ms ms

2 1 .
Searching for the static solutions to (1) and performing the

micromagnetic simulations of tubes, we restrict our considerations
to the regimes of solidification-dominated stress and cooling-
dominated stress. Also, we focus on thin-wall tubes taking
β β= =( ) ( ) 0ms ms

1 3 in analytical evaluations. Thus, we consider a
quasi-2D system with a periodic boundary condition relevant to
the tube geometry. It is basically in-the-plane magnetized due to
the magnetostatics.

2.1. Tubes with cooling-dominated stress

According to the above analysis of the anisotropy constants, the
cooling-dominated stress produces an axial anisotropy mainly.
Therefore, having in mind the aim of obtaining the periodic along
the tube axis solutions, first, we seek for single-DW solutions as-
suming the domains to be magnetized longitudinally to the wire.
Thus, the boundary condition = ± ( )

| |→∞
Mmlim , 0, 0

x
s is satisfied.

Using a systematic approach of the soliton theory, we look for the
equations of motion in the multi-linear form. Following [19], we
apply the transform
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