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a b s t r a c t

MHD natural convection melting in a square cavity with a local heater has been analyzed numerically.
The domain of interest is an enclosure bounded by isothermal vertical walls of low constant temperature
and adiabatic horizontal walls. A heat source of constant temperature is located on the bottom wall. An
inclined uniform magnetic field affects the natural convective heat transfer and fluid flow inside the
melt. The governing equations formulated in dimensionless stream function, vorticity and temperature
with corresponding initial and boundary conditions have been solved using implicit finite difference
method of the second-order accuracy. The effects of the Rayleigh number, Stefan number, Hartmann
number, magnetic field inclination angle and dimensionless time on streamlines, isotherms and Nusselt
number at the heat source surface have been analyzed.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic field plays a significant role for an external thermal
control in many industries, associated to liquid metals and high-
energy equipment [1,2]. The presence of magnetic field can reduce
turbulent flows and fluctuations during the solidification process
[3]. Because of strong effect of magnetic field on convective flows
and heat transfer it uses in liquid metal blankets, crystal growth
and other industries [1–3]. Analysis of MHD convective fluid flow
and heat transfer is presented in many papers [4–10]. Thus, Sa-
thiyamoorthy and Chamkha [4] have studied numerically natural
convective flow and heat transfer of electrically conducting liquid
gallium in a square cavity under the effect of inclined uniform
magnetic field. It has been found that the average Nusselt number
is a non-linear decreasing function of the Hartmann number re-
gardless of the magnetic field inclination angle. Benos et al. [5]
have analyzed steady two-dimensional MHD natural convection of
an electrically conducting fluid in a horizontal internally heated
shallow cavity. Numerical study has been carried out using a finite
volume technique. They found that the fluid is decelerated by the
magnetic field leading to the dominance of heat conduction and
the heat transfer reduction. MHD natural convective flow and heat
transfer in a laterally heated enclosure with a heat-conducting
vertical partition on the basis of polynomial differential

quadrature method has been investigated by Kahveci and Oztuna
[6]. It has been found that the x-directional magnetic field is more
effective in suppression of convection than the y-directional
magnetic field. Jing et al. [7] have studied MHD natural convection
of liquid metal in a cubical cavity using the projection method of
second-order accuracy. It has been shown that three-dimensional
effects on temperature are much stronger when the cavity walls
are heat-conducting compared with the temperature distribution
in the case of adiabatic walls. Numerical simulation of steady
buoyant flow of liquid LiPb in a cubical cavity under the effect of
magnetic field has been carried out by Wang et al. [8] using Fluent
software. It has been shown that for high values of Hartmann
number the control effects of magnetic field on convective motion
become visible and the velocity profiles tend to become uniform.
Numerical and experimental analysis of natural convection in a
cubical cavity filled with a magnetic fluid under the effect of
uniform magnetic field has been carried out by Yamaguchi et al.
[9] and Krakov et al. [10]. The obtained results showed that a set of
numerous convective structures exists in the cube and stability of
these structures depends on the interaction between gravity and
Lorentz forces. Bondareva and Sheremet [11] have analyzed la-
minar natural convection of metal melt (Pr ¼ 0.02) in a three-
dimensional enclosure under the effect of inclined uniform mag-
netic field. It has been shown that it is possible to utilize 2D data
for an analysis of average Nusselt number when the aspect ratio
(A) is grater than unit while the flow configuration in the mid-
section of a 3D cavity differs insignificantly only than AZ2. Seli-
mefendigil et al. [12] have studied natural convective heat transfer
of ferrofluid in a partially heated square cavity. It has been
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revealed that velocity profiles are very sensitive to the magnetic
dipole source strength and the average heat transfer decreases
with the magnetic dipole strength. Now many studies deal with
analysis of MHD natural convection in nanofluids [13–15].

Not so many theoretical and even less experimental in-
vestigations are dedicated to the problem of natural convection
regimes during phase transition under the influence of external
magnetic field [16,17]. Thus, Bouabdallah and Bessaih [16] have
analyzed the effect of magnetic field on three-dimensional natural
convection solidification in a cubical cavity. The finite volume
method with enthalpy formulation is utilized to solve the for-
mulated boundary value problem. It has been found a strong de-
pendence between the solid–liquid interface shape and the in-
tensity and orientation of magnetic field. Zaidat et al. [17] have
conducted experiments on control of melt convection by a tra-
veling electromagnetic field. Some investigations have been car-
ried out on melting of phase change material in various cavities
[18–20] in the absence of magnetic field effects.

The purpose of the present study is to examine the influence of
inclined magnetic field on natural convection melting in a cavity
with a local heater. Calculations have been performed for a square
enclosure filled with pure gallium heated from the local source
and cooled from two vertical side walls. The present paper is an
extension of natural convection melting without magnetic field
[20]. To authors best of knowledge this problem has not been
studied before and the reported results are new and original.

2. Mathematical formulation

Consider a square cavity of length L with a square heat source
of sizelhaving high constant temperature Th mounted on the bot-
tom wall. At initial time the cavity is filled with a phase change
material (pure gallium) in solid state having fusion temperature
Tm. Two opposite vertical walls are kept at low constant tem-
perature Tc. Uniform magnetic field affects the natural convective
melt flow and heat transfer under the inclination angle α. The
schematic diagram of the physical system with temperature
boundary conditions is presented in Fig. 1.

The flow is assumed to be laminar, two-dimensional and time-
dependent. The buoyancy force is defined by the Boussinesq ap-
proximation. The thermophysical properties of the material are
constant. Viscous dissipation and pressure work are neglected.
Under the abovementioned assumptions the governing equations
can be written as follows in Cartesian coordinates for the liquid
state of material:
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For the solid state of analyzed material we utilized the heat
conduction equation in following form
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is the enthalpy;

x, y are the Cartesian coordinates; t is the time; g is the gravity
acceleration; ρs and ρl are the densities of solid and liquid phases,
respectively; μl is the dynamic viscosity of liquid phase; β is the
thermal expansion coefficient of liquid phase; u, v are the velocity
components in x- and y-directions, respectively; p is the pressure;

( )σ¯ = ¯ × ¯j V B is the current density; V̄ is the velocity; B̄ is the
magnetic field intensity; s is the electrical conductivity; T is the
temperature; Th is the heat source temperature; Tm is the melting
temperature; ks and kl are the thermal conductivities of solid and
liquid phases, respectively; Lm is the latent heat; cs and cl are the
specific heats of solid and liquid phases, respectively.

To associate the both energy equations for solid and liquid
phases and to remove the jumps of enthalpy function on the phase
transition line the following smoothing function was introduced:
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The formulated dimensional partial differential Eqs. (1)–(5)
have been written in non-dimensional form using the following
dimensionless variables
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the governing Eqs. (1)–(5) using the abovementioned variables can
be written as follows
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Fig. 1. Schematic diagram of the physical system.
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