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a b s t r a c t

We study the ground state properties of a 4-qubit spin glass like (SGL) chain with probes at the end of the
chain and compare our results with the non-spin glass like (NSGL) case. The SGL is modeled as a spin
chain with nearest-neighbor couplings, taking on normal variates with mean J and variance Δ2. The
entanglement between the probes is used to detect any discontinuity in the ground state energy spec-
trum. For the NSGL case, it was found that the concurrence of the probes exhibits sharp transitions
whenever there are abrupt changes in the energy spectrum. In particular, for the 4-qubit case, there is a
sudden change in the ground state energy at an external magnetic field B of around 0.66 (resulting in a
drop in concurrence of the probes) and 1.7 (manifest as a spike). The latter spike persists for finite
temperature case. For the SGL sample with sufficiently large Δ, however, the spike is absent. Thus, an
absence in the spike could act as a possible signature of the presence of SGL effects. Moreover, the
sudden drop in concurrence at ≈B 0.66 does not disappear but gets smeared with increasing Δ. How-
ever, this drop can be accentuated with a smaller probe coupling. The finite temperature case is also
briefly discussed.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Phase transitions in crystalline or ordered solids have been
studied extensively and it is now quite well understood. However,
this is not the case for disordered solids. One such disordered solid
example is the spin glass, which remains as one of the most
challenging and interesting problems in condensed matter phy-
sics. A spin glass consists of spins or magnetic moments arranged
in randomness either through their positions or the different in
signs between the neighboring couplings [1–7]. The neighboring
couplings refer to ferromagnetic and antiferromagnetic. The dis-
order in site or coupling causes frustration in a spin glass. At cer-
tain critical temperature or sometimes called freezing tempera-
ture, this random collection of spins will be frozen in place. It is
because of this frozen state transition that the frustration arises.
Due to this frustration among the neighboring spins, many pos-
sible ground state configurations resulted. This produced a com-
plex and rugged free energy landscape.

Spin glasses are magnetic alloys comprising x concentration of
magnetic impurities occupying random sites in a non-magnetic
host metal [6]. By controlling the concentration and distribution of

such impurities randomly on the host, it is possible to observe the
spin glass transition at low temperature. Examples of such im-
purities include Manganese (Mn), Iron (Fe) and Europium (Eu).
Magnetic alloys which are originally studied are Cu1�x Mnx [8] and
Au1�x Fex [9]. These magnetic alloys are considered as canonical
spin glasses. Other alloys which are studied as a spin glass include
Eux Sr1�x S [10] and La1�x Gdx Al2 [11]. Theories like the Edwards-
Anderson (EA) model [12] which only allows the spins to interact
via nearest-neighbor couplings with no long range order and
Sherrington–Kirkpatrick (SK) model [13] for which every spin
couples equally with every other spin are used in an attempt to
explain mainly the cusp in the magnetic susceptibility. Essentially,
the EA model replaces the site disorder and Ruderman–Kittel–
Kasuya–Yosida (RKKY) distribution [14–16] with a random set of
bonds, for instance, based on a gaussian distribution. An order
parameter q is used to characterize the spin glass phase. The ori-
ginal EA equations are not simple to solve and are only soluble in
the limits →T 0 and →T Tf . At these limits, the EA equations
showed an asymmetric cusp in the magnetic susceptibility and
specific heat. In contrast, the results by Fischer [17] showed that
the theoretical specific heat is different from the experimental
result except for the low temperature linear dependence when
using spin =S 1

2
. Although the SK model did exhibit a cusp in the

magnetic susceptibility and specific heat, the entropy S goes to
negative limit and the free energy is maximumwith respect to the
order parameter q. In addition, when q¼0, the spin glass state has
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lower free energy than it is when ≠q 0. All these are in contrast
with what a second order transition should exhibit. Due to this
instability in SK solution, Almeida and Thouless (AT) [18] did a
detailed analysis on it and showed that the solution is unstable at
low temperature. They showed the stability limits of the SK so-
lution with the AT line dividing the unstable and stable areas in
the spin glass phase diagram. Primarily, the instability is due to the
fact that SK model treats all the replicas as indistinguishable – a
replica symmetric solution. In order to solve this problem, Parisi
[19–23] came out with a replica symmetry breaking (RSB) scheme
which removes the unphysical negative entropy. It was found to be
at least marginally stable. In spite of some success in using these
models to describe some behaviors of the spin glass, they are not
able to fully account for all the experimental results. This may due
to the fact that these theories are classical in nature and did not
consider the quantization of the spins of the impurities [24]. Ex-
perimentally, the measurement of the alternating-current (a.c.)
susceptibility on a spin glass exhibits a cusp at certain freezing
temperature Tf at low applied magnetic field. The sharp cusp in the
magnetic susceptibility suggests that the alloy undergoes a phase
transition [25]. Indeed, for alloys like gold–iron [9] and copper–
manganese [8], these spin glasses show a cusp at certain critical
temperature. It has been shown that the produced cusp is sensitive
to the applied magnetic field and with just 100 G of magnetic field,
a broader maxima is produced [9,26,27]. Besides been field de-
pendent, certain spin glasses are also found to be frequency de-
pendent [8,24]. Other measurement like finding the specific heat
of Au0.92 Fe0.08 [28] and CuMn [29] were studied. In recent years,
LiHoxY1�x F4 which can be described with a quantum Ising spin
glass model has been studied experimentally and numerically [30–
35]. For an x concentration of ≤0.25, it is believed that there is a
spin glass phase. As the concentration is diluted, it is still an open
question of whether a spin glass or an antiglass spin phase exists.

In quantum information theory, the study of entanglement in
spin chain is believed to be important [36–43] as it is regarded as a
key resource in applications like quantum key distribution,
quantum teleportation, quantum dense coding, entanglement
swapping and others [41]. Quantum correlation have been used in
many-body systems to explore the phase transition at zero and
finite temperature [43]. In the past, different order parameters and
excitation spectrum are been used to characterize the phase
transition of a many-body system. The synergy between quantum
information and condensed matter physics has provided many
new insights and directions. Specifically, a thorough analysis of the
entanglement in the quantum critical models have been done [44–
46]. With the use of entanglement from quantum information
theory, the study of the ground state for many-body systems re-
veals new and interesting properties. The appearance of abrupt
changes in the entanglement in the quantum phase transition is
seen as a sensitive probe in determining the phase transition in a
spin chain when one external qubit is coupled to both sides of the
chain. This approach has been applied to the XY Heisenberg model
with the use of nonlocal probe qubits to detect the quantum phase
transition [47–49]. The entire spin chain, including the nonlocal
probe qubits can be engineered experimentally using quantum
dots with one or more electrons [50–54]. Recently, Shim et al. [55]
have studied the quantum phase transition by using a double
quantum dot coupled locally to a XXX Heisenberg model spin
chain as an alternative and efficient probe for detection of a
quantum phase transition. Although much studies have been done
on understanding quantum dots and using them as a probe to
detect phase transition through computation of the entanglement
between probes, very little work is found on understanding how
the entanglement of the SGL chain behaves at low temperature
when it is coupled to two external probes. Hence, the focus of this
paper is to investigate the entanglement of a SGL XXX Heisenberg

model by using nonlocal probe coupled to both ends of the SGL
chain.

With this motivation, we numerically investigate a quantum
SGL chain consisting of 4 qubits described by the XXX Heisenberg
model. Each end of the SGL chain is then coupled to a qubit or
quantum dot which serves as a probe. Using this model, we ex-
amine how the entanglement of the probes that are attached to
the SGL chain changes by varying the external magnetic field and
the standard deviation of the random coupling (between the SGL
sites).

The paper is organized as follows. We begin in Section 2 by
defining the Hamiltonian of a 4-qubit system coupled to a probe
qubit on each end of the spin chain. The XXX Heisenberg model
spin chain is essentially modeled as a SGL exhibiting the usual
characteristics of disorder and frustration. We then discuss the
entanglement (concurrence) between the 2 probes which is con-
sidered as nonlocal, after tracing out the SGL chain as a function of
the external applied magnetic field and the standard deviation in
the coupling numerically. These results are presented and dis-
cussed in Section 3. In Section 4, we summarize our results.

2. Theoretical formulation

In this section, we present the Hamiltonian model used in our
study. After formulating the Hamiltonian for the SGL chain, we
coupled both ends of the SGL chain with a probe (qubit). In order
to look at the quantum correlation between the two probes, we
trace out the SGL chain which can be in general make up of n sites
and compute with suitable entanglement measure to observe the
ground state properties of the SGL chain. The XXX Heisenberg SGL
chain is described by
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where Ji are the random variables and σ=α αSi i2
denotes the Pauli

matrices α( = )x y z, , of the ith spin [43] which is subject to the
open boundary condition ≠α α

+S Si 1 1 . In this case, the ith spin re-
presents the individual site number from the SGL chain. The ex-
change energies Ji are quenched random variables with a prob-
ability distribution ( ) =

πΔ
Δ−P J ei

J1
2

/22 2 where Δ is the standard

deviation for the distribution. By applying a uniform external
magnetic field on each qubit in the SGL chain, the Hamiltonian for
the SGL chain ( )Hsgl model is given by
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where B is the external magnetic field applied transversely across
the individual spin site Si

z . By coupling a single probe (qubit) at
each end of the SGL chain,
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where αSp1
and αSp2

are the spin matrices α( = )x y z, , for the probes
at the start and end of the chain respectively. Experimentally, the
probe could be implemented with quantum dots. The probe cou-
pling Jp describes the bond between the probes (qp1 and qp2) and
end sites of the SGL chain (q1 and qn) respectively. The SGL chain is
described with the qubit sites as … −q q q q, , ,n n1 2 1 . The model is il-
lustrated in Fig. 1.

In order to measure the quantum entanglement between the
two nonlocal probes, we adopt a bipartite measure for a two-level
system called concurrence [56,57]. It is a measure of the non-se-
parability of two-qubit density matrix with a value of zero for a
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