

Ain Shams University

Ain Shams Engineering Journal

www.elsevier.com/locate/asej

CrossMark

ENGINEERING PHYSICS AND MATHEMATICS

Cylindrical shock waves in rotational axisymmetric (non-ideal dusty gas with increasing energy in presence of conductive and radiative heat fluxes

Department of Mathematics, Motilal Nehru National Institute of Technology, Allahabad 211004, India

Received 24 June 2014; revised 15 November 2014; accepted 14 December 2014 Available online 10 February 2015

KEYWORDS

Mechanics of fluids; Shock waves; Similarity solution; Dusty gas; Conductive and radiative heat fluxes; Rotating medium **Abstract** The propagation of a cylindrical shock wave in a rotational axisymmetric non-ideal dusty gas in the presence of conductive and radiative heat fluxes with increasing energy, which has variable azimuthal and axial fluid velocities, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. Similarity solutions are obtained and the effects of the variation of the heat transfer parameters, the parameter of non-idealness of the gas, the mass concentration of solid particles in the mixture and the ratio of the density of solid particles to the initial density of the gas are investigated. It is shown that the heat transfer parameters and the parameter of non-idealness of the gas, both, decrease the compressibility of the gas and hence there is a decrease in the shock strength. © 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Marshak [1] studied the effect of radiation on the shock propagation by introducing the radiation diffusion approximation. He solved both the cases of constant density and constant pressure fields without invoking conditions of self similarity. Using the same mode of radiation, Elliott [2] discussed the conditions leading to self-similarity with a specified functional form of the mean free path of radiation and obtained a solution for self-similar spherical explosion. Wang [3], Helliwell [4] and

E-mail address: gn_chaurasia_univgkp@yahoo.in Peer review under responsibility of Ain Shams University.

Nicastro [5] treated the problems of radiating walls, either stationary or moving, generating shocks at the head of self-similar flow fields. Ghoneium et al. [6] obtained the self-similar solution for spherical explosions taking into account the effects of both conduction and radiation in the two limits of Rosseland radiative diffusion and Planck radiative emission.

The formation of self-similar problems and examples describing the adiabatic motion of non-rotating gas models of stars, is considered by Sedov [7], Zel'dovich and Raizer [8], Lee and Chen [9], and Summers [10]. The experimental studies and astrophysical observations show that the outer atmosphere of the planets rotates due to rotation of the planets. Macroscopic motion with super-sonic speed occurs in an interplanetary atmosphere and shock waves are generated. Shock waves often arise in nature because of a balance between wave breaking non-linear and wave damping dissipative forces [8]. Collisional and Collisionless shock waves can

http://dx.doi.org/10.1016/j.asej.2014.12.010

2090-4479 © 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Nomenclature			
A	angular velocity	U	non-dimensional radial component of fluid veloc-
A_{a}	initial angular velocity		ity
a_m	speed of sound in the mixture	U_m	internal energy per unit mass of the mixture
a_{iso}	isothermal speed of sound in the mixture	и	radial component of fluid velocity
B	constant	V	shock velocity
b	internal volume of the molecules of the gas	V_{sn}^*	volume of solid particles
\overline{b}	parameter of non-idealness of the gas	V^{*}	total volume of the mixture
C_p	specific heat of the perfect gas at constant pressure	v	azimuthal component of velocity
C_v^r	specific heat of the perfect gas at constant volume	W	non-dimensional axial component of fluid velocity
C_{sp}	specific heat of solid particles	W	axial component of fluid velocity
C_{pm}	specific heat of the mixture at constant pressure	Х	similarity variable
C_{vm}	specific heat of the mixture at constant volume	X_p	value of X at inner expanding surface
D	non-dimensional density	Ý	reduced pressure
Ε	total energy of the flow between shock and the in-	Ζ	volume fraction of solid particles in the mixture
	ner contact surface or piston	Z_a	initial volume fraction of solid particles in the mix-
E_0	constant		ture
E^*	constant	α_R	Rosseland mean absorption coefficient
F	total heat flux	β	density ratio across the shock
F_{c}	conductive heat flux	β'	ratio of specific heat of the solid particles to that of
F_R	radiative heat flux	,	perfect gas at constant volume
f	reduced total heat flux	β_c	density variation index in thermal conductivity
G	ratio of the density of solid particles to that of the	β_R	temperature variation index in absorption coeffi-
	perfect gas	<i>,</i>	cient
G_a	ratio of the density of solid particles to that of the	Г	ratio of specific heat of the mixture
	perfect gas at initial state	Γ_{c}	non-dimensional conduction heat transfer param-
g	reduced density		eter
ĥ	reduced azimuthal velocity	Γ_R	non-dimensional radiation heat transfer parameter
J	abbreviation	γ	ratio of the specific heat of the perfect gas
Κ	thermal conductivity	δ_c	density variation index in thermal conductivity
K_p	mass fraction (concentration) of the solid particles	δ_R	density variation index in absorption coefficient
1	in the mixture	λ	ambient azimuthal velocity variation index
L	abbreviation	μ	ambient axial velocity variation index
l_r	non-dimensional radial component of vorticity	π	ratio
$l_{ heta}$	non-dimensional axial component of vorticity	ρ	density of the mixture
l_{z^*}	non-dimensional azimuthal component of	$ ho_{sp}$	density of solid particles
	vorticity	ρ_{g_a}	density of the perfect gas in the initial state
M	shock-Mach number	$\overline{\rho}_{g}^{ou}$	partial density of the gas in the mixture
M_e	effective shock-Mach number	σ	Stefan–Boltzman constant
т	total mass of the mixture	ϕ	reduced radial velocity
m_{sp}	mass of solid particles	ψ	reduced axial velocity
N	abbreviation	ξ	non-dimensional azimuthal component of fluid
Р	non-dimensional pressure		velocity
р	fluid pressure	ç	vorticity vector
p_g	partial pressure of the gas in the mixture	ς_r	radial component of vorticity vector
<i>Q</i>	non-dimensional total heat flux	ς_{θ}	axial component of vorticity vector
\vec{q}	fluid velocity	ς_{z^*}	azimuthal component of vorticity vector
R	shock radius		
R^*	gas constant	Subscri	<i>ipts</i>
r	space coordinate	а	immediately ahead of the shock
r_p	radius of inner expanding surface	п	immediately behind the shock
S	abbreviation	S	at constant entropy
S	total energy variation index	Т	at constant temperature
Т	absolute temperature of the mixture	0	reference state
t	time coordinate		

Download English Version:

https://daneshyari.com/en/article/815540

Download Persian Version:

https://daneshyari.com/article/815540

Daneshyari.com