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a b s t r a c t

This paper investigates the steady two-dimensional magnetohydrodynamic (MHD) flow of an Oldroyd-B
fluid over a stretching surface with homogeneous–heterogeneous reactions. Characteristics of relaxation
time for heat flux are captured by employing new heat flux model proposed by Christov. A system of
ordinary differential equations is obtained by using suitable transformations. Convergent series solutions
are derived. Impacts of various pertinent parameters on the velocity, temperature and concentration are
discussed. Analysis of the obtained results shows that fluid relaxation and retardation time constants
have reverse behavior on the velocity and concentration fields. Also temperature distribution decreases
for larger values of thermal relaxation time.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The non-Newtonian fluids at present have wide applications in
industry and engineering. Some of their common examples are
polymer solutions, paints, certain oils, exotic lubricants, colloidal
and suspension solutions, clay coatings and cosmetic products.
Due to diverse physical structures of these fluids, there is not even
a single constitutive relationship which can predict all the salient
features of non-Newtonian fluids. Generally these fluids have been
classified into three main categories: (i) the differential type, (ii)
the rate type and (iii) the integral type. Numerous attempts have
been made in the past for the flows of differential type fluids. This
is because of the fact that constitutive equations in the differential
type fluids are much easier and one can explicitly obtain the shear
stresses in terms of velocity components. Existing literature in-
dicates that little attention has been given to the flows of rate type
material. The simplest subclass of rate type fluid is Maxwell fluid.
This fluid model can only describe relaxation time but it provides
no information about its retardation time. On the other hand an
Oldroyd-B fluid [1–10] has a measurable relaxation and retarda-
tion times and it can capture the viscoelastic features of dilute
polymeric solutions under general flow conditions.

The heat flux model proposed by Fourier [11] is the most suc-
cessful relation for the description of heat transfer mechanism in

various situations. However it has a major limitation that it yields
a parabolic energy equation which indicates that initial dis-
turbance is instantly experienced by the medium under con-
sideration. This feature is referred in literature as “Paradox of heat
conduction”. To overcome this situation, various researchers have
proposed modifications in the Fourier's heat conduction law.
Cattaneo [12] suggested a modification of Fourier's model by in-
corporating relaxation time for heat flux. It is seen that such
consideration produces hyperbolic energy equation and it allows
the transportation of heat through the propagation of thermal
waves with finite speed. Such heat transportation process has
exciting practical applications that span from nanofluid flows to
the modeling of skin burn injury (see Tibullo and Zampoli [13] and
references therein). Christov [14] further modified the time deri-
vative in Maxwell–Cattaneo's model with Oldroyd's upper-con-
vected derivative in order to preserve the material-invariant for-
mulation. This modification in literature is recognized as Catta-
neo–Christov heat flux model. Ciarletta and Straughan [15] proved
the uniqueness of the solutions for the Cattaneo–Christov equa-
tions. Straughan [16] examined the natural convection in hor-
izontal layer of an incompressible Newtonian fluid. Han et al. [17]
studied the slip flow and heat transfer in flow of Maxwell fluid
subject to Cattaneo–Christov model. They solved the governing
problem analytically by homotopy analysis method (HAM). Mus-
tafa [18] examined Cattaneo–Christov heat flux in rotating flow of
upper-convected Maxwell fluid.

Many chemically reacting systems involve both homogeneous
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and heterogeneous reactions. Some of the reactions have the
ability to proceed very slowly or not at all, except in the presence
of a catalyst. The interaction between the homogeneous and het-
erogeneous reactions is very complex involving the production
and consumption of reactant species at different rates both within
the fluid and on the catalytic surfaces such as reactions occurring
in food processing, hydrometallurgical industry, manufacturing of
ceramics and polymer production, fog formation and dispersion,
chemical processing equipment design, crops damage via freezing,
cooling towers and temperature distribution and moisture over
agricultural fields and groves of fruit trees. A model for isothermal
homogeneous–heterogeneous reactions in boundary layer flow of
viscous fluid past a flat plate is studied by Merkin [19]. He pre-
sented the homogeneous reaction by cubic autocatalysis and the
heterogeneous reaction with a first order process. It is shown that
the surface reaction is the dominant mechanism near the leading
edge of plate. Chaudhary and Merkin [20] studied homogenous–
heterogeneous reactions in boundary layer flow of viscous fluid.
They computed numerical solution near the leading edge of a flat
plate. Bachok et al. [21] analyzed stagnation-point flow towards a
stretching sheet with homogeneous–heterogeneous reactions.
Khan and Pop [22] investigated effects of homogeneous–hetero-
geneous reactions in the flow of viscoelastic fluid towards a
stretching sheet. Shaw et al. [23] examined homogeneous–het-
erogeneous reactions in micropolar fluid flow from a permeable
stretching or shrinking sheet in a porous medium. Kameswaran
et al. [24] extended the work of Khan and Pop [22] for viscous
nanofluid over a porous stretching sheet. Hayat et al. [25] analyzed
homogeneous–heterogeneous reactions in the stagnation point
flow of carbon nanotubes with Newtonian heating. Effect of
homogeneous–heterogeneous reactions in flow of Powell–Eyring
fluid is examined by Hayat et al. [26].

Many analytical methods like differential transformation
method (DTM) [27–29], least square method (LSM) [30,31],
homotopy analysis method (HAM) [32–40], etc. are observed in
the literature for solving the physical and engineering problems.
Homotopy analysis method (HAM) is one of the most efficient
methods in solving different type of nonlinear equations such as
coupled, decoupled, homogeneous and non-homogeneous. Many
previous analytic methods have some restrictions in dealing with
nonlinear equations. Unlike perturbation method, HAM is in-
dependent of any small or large parameters. Also HAM provides us
with great freedom to choose initial guesses and auxiliary para-
meters to control and adjust the convergence region which is a
main lack of other several techniques.

Motivated by such facts, the purpose of this paper is to study
the heat and mass transfer in MHD flow of an Oldroyd-B fluid over
a stretching sheet with Cattaneo–Christov heat flux. Influence of
homogeneous–heterogeneous reactions is also examined. Con-
vergent solutions are obtained by homotopy analysis method
(HAM). The behaviors of different parameters on the physical
quantities of interest have been examined graphically.

2. Model development

Consider the steady two-dimensional incompressible flow of
an Oldroyd-B fluid bounded by a linear stretching sheet. The ve-
locity of sheet is assumed u cxw = where c 0> is the stretching
rate. The sheet is kept at constant temperature Tw whereas T∞
being the ambient temperature such that T Tw > ∞. A uniform
magnetic field of strength B0 is applied in y-direction. Electric and
induced magnetic fields are neglected. Flow analysis is carried out
with homogeneous–heterogeneous reactions. The homogeneous
reaction for cubic autocatalysis can be expressed as follows:

A B B k ab2 3 rate , 1c
2+ → = ( )

while first-order isothermal reaction on the catalyst surface is
presented in the form

A B k arate , 2s→ = ( )

where a and b are the concentrations of the chemical species A and
B and kc and ks are the rate constants. We assume that both re-
action processes are isothermal. Under these assumptions, the
boundary layer equations governing the flow can be expressed as
follows:

u
x y

v
0,

3
∂
∂

+ ∂
∂

=
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

u
u
x

u
y

u
u

x
u

y
u

u
x y

u
y

u
u

x y
u

y
u
x

u
y

u
y

v
y

B u
u
y

v v 2 v

v

v ,
4

1
2

2

2
2

2

2

2

2

2 2

3

2

3

3

2

2

2

2

0
2

1

Λ

ν νΛ

σ Λ

∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂ ∂

= ∂
∂

− ∂
∂ ∂

+ ∂
∂

− ∂
∂

∂
∂

− ∂
∂

∂
∂

− + ∂
∂ ( )

⎛
⎝⎜

⎞
⎠⎟C u

T
x

T
y

qv . ,
5

pρ ∂
∂

+ ∂
∂

= − ∇
( )

u
a
x

v
a
y

D
a

y
k ab ,

6
A c

2

2
2∂

∂
+ ∂

∂
= ∂

∂
−

( )

u
b
x

v
b
y

D
b

y
k ab ,

7
B c

2

2
2∂

∂
+ ∂

∂
= ∂

∂
+

( )

The corresponding boundary conditions are
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where u and v are the velocity components in the x- and y-di-
rections respectively, ν the kinematic viscosity of fluid, ρ the fluid
density, Λ1 the relaxation time, Λ2 the retardation time, s the
electrical conductivity, Cp the specific heat, DA and DB the re-
spective diffusion species coefficients of A and B, a0 the positive
dimensional constant and the heat flux q satisfies the following
relationship [13]:
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in which λ is the relaxation time of heat flux and k the thermal
conductivity of fluid. Note that Eq. (9) simplified to Fourier's law
for λ¼0. Since the fluid is incompressible so V. 0∇ = and Eq. (9)
becomes

⎜ ⎟⎛
⎝

⎞
⎠t

k Tq
q

V q q V. . .
10

λ+ ∂
∂

+ ∇ − ∇ = − ∇
( )

The above equation is taken in absence of magnetohydrodynamics
for simplicity. Eliminating q between Eqs. (5) and (10), we obtain
following governing equation [14]:
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