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a b s t r a c t

A numerical extension of the simple Stoner–Wohlfarth model to the case of bi-dimensional angular
distributions of easy axis is provided. The results are particularized in case of step-like, Gaussian-like and
user defined distributions. In spite of its simplicity, the model can be applied to magnetically textured
thin films and multilayers with in-plane magnetic anisotropy, independently on the texture source.
Exemplifications are provided for a simple ferromagnetic textured FeCo film as well as for a FeMn/FeCo/
Cu/FeCo spin valve structure.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

There are more than 60 years since E.C Stoner and E.P Wohl-
farth published their model about the magnetization reversal of
single-domain ferromagnets [1,2]. Despite its simplicity, the
Stoner–Wohlfarth (S–W) model is still of actual interest while it
provides results in good concordance with experimental ob-
servations for many system of technological impact. That is due to
the fact that the presently developing nanotechnology deals fre-
quently with assemblies of magnetic nanoentities respecting the
condition of magnetic monodomains [3] (to be mentioned here
biomedical and catalytic applications of magnetic nanoparticles
[4,5] or applications related to magnetic recording or sensoristics
[6–9] involving patterned thin films, multilayers and nanowires).
The model has the great advantage that, due to its simplicity,
analytical expressions can be derived in particular cases trans-
parent to intuitive physical explanations. Moreover, the case of
magnetic assemblies can be analyzed via usual statistical means of
non-interacting entities with further extension to the perturbation
effect of possible interactions. The most evident example is the
case of magnetic monodomain nanoparticle assemblies which
behavior can be easily explained starting from the S–W model of a
nanoparticle [3,10]. Very interesting is that the S–W model with
related corrections can also provide in a first approximation the

description of more complex effects connected to the interfacial
interactions leading to exchange-spring and exchange bias phe-
nomena, which are of large technological impact in our days
[3,9,11–14]. This is the reason for a permanent developing of the
model in different versions, taking into account different addi-
tional energy contributions or suitable averaging processes. Ex-
cellent reviews of the model in respect to different applications
and present achievements were provided, among others, by Radu
and Zabel [15] and Tannous and Giewaltowski [16]. At this point it
is to mention that only numerical solutions are suitable for a
general treatment of the S–W problem, especially in case of
magnetic assemblies (even in interaction), but however the in-
volved numerical analysis is more simple, efficient and transparent
as compared to the case of complex micromagnetic simulations,
which on the other hand may take into account additional mi-
crostructural aspects and specific interactions among components.

As the main hypothesis of the model is the fact that all the local
spins (magnetic moments) of the magnetic entity are oriented in
the same preferred direction and are rotating coherently under an
applied magnetic field. Hence, just one rotating representative
macrospin is associated to the magnetic entity, which means that
the exchange energy is infinite with respect to other magnetic
energy terms and can be considered as a constant in the energy
expression. As it will be shown in the next section, the magneti-
zation reversal of the macrospin is depending on the direction of
the applied field with respect to a preferred direction, which is
called easy axis (EA) of magnetization. A quite realistic case of
assembly of magnetic entities is the one involving an angular easy
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axis distribution (EAD), which can cover the limits from a unique
direction (Dirac type angular distribution) to randomly distributed
directions in the whole space. An angular distribution centered
along a given direction reflects the case of a higher/lower mag-
netic texture depending on the distribution width. There are dif-
ferent possibilities for obtaining experimentally appropriate in-
formation about the EAD by using either Mössbauer spectroscopy
[17,18] and specific magnetometry techniques, as for example, via
Orientation Ratio (OR) measurements or Flanders and Shtrikman’s
principle [19,20]. However, all these methods present quit strong
limitations [20] and except the last method, make apriori as-
sumptions about the type of the EAD function. While the magnetic
texture effects are clearly reflected in the shape of the hysteresis
loop of the system, one may assume that the reciprocal approach
of using suitably collected hysteresis loops in order to get an as
much as complete information about the distribution of easy axis
might be also very effectively. For example, Kronmuller et al. have
already shown and carefully analyzed different effects induced by
magnetic texture and Gaussian EADs related to grain orientation
on nucleation and coercive fields, in case of oriented sintered Nd–
Fe–B magnets [21–23].

In this respect, the present work deals with a general numerical
solution of the S–W model for bi-dimensional angular distribution
of EAD. The model can be extended to different types of EADs and
is consistent with the case of bi-dimensional magnetic systems, as
for example thin films and multilayers presenting in plane mag-
netic anisotropy. In order to respect the model hypothesis, the real
magnetic structures should not allow the formation of magnetic
domains, fulfilling therefore conditions related to either specific
thicknesses (assuring also the in plane anisotropy) or a specific
island-like morphology. It is worth to mention that such a tri-di-
mensional type of growth (Volmer–Weber growth mode) leading
to the formation of uniform nanogranular films with small or-
iented island-like morphologies with lateral size of a few tenths of
nanometers and behaving as magnetic single domains were
usually reported in case of thin films and multilayers obtained by
either sputtering or thermo-ionic arc methods [24–26]. Moreover,
there is a growing interest in deposition of nanoparticle-as-
sembled thin films by femtosecond pulsed laser deposition in
vacuum [27,28] which in certain conditions can be alternative
physical supports for the described model.

2. Model and simulations

2.1. Algorithm

The starting point of the algorithm is based on the simple S–W
model of a magnetic monodomain bidimensional entity, which also
assumes: (i) an in plane applied field, H, (ii) an enhanced in plane
shape anisotropy in order to allow the in plane reversal process and
(iii) an in plane uniaxial anisotropy (anisotropy constant KF). To note
that such a simplified model infers a specific physical system con-
sisting of well-shaped bidimensional magnetic grains (e.g. circular,
with in plane uniaxial magneto-crystalline anisotropy or ellipsoidal,
with shape dominating uniaxial anisotropy) and without surface de-
terioration (to avoid spatial variations of the anisotropy constant and
other microstructural effects). In addition, suchmagnetic grains should
not interact either by dipolar or exchange interactions. Although such
ideal conditions are never realized, real systems can approach them
enough in order to allow a homogeneous rotation model for non-in-
teracting entities, but with appropriate corrections for the involved
parameters, as discussed later.

Only two contributions have to be considered to the magnetic
energy of the system (infinite and constant exchange energy is
assumed) with spontaneous magnetization MF:

E HM Kcos sin 1F F0
2μ θ β β= − ( − ) + ( )

In the above expression, the first term is the Zeeman energy
and the second is the uniaxial anisotropy energy whereas θ and β
are the angles between EA and H and between EA and MF, re-
spectively (see Fig. 1). The typical solution of the S–W problem is
to find the angle β which places the system in a stationary state
under a given applied field (e.g. magnitude and orientation versus
the EA), that is to find that specific value of β leading to an energy
minimum for a given H and θ. This can be done either analytically
or numerically. The first way is not suitable for general use because
the analytical solutions can be found only for a few particular
cases. For example, angle β could be simply obtained as satisfying
the typical two conditions E/ 0β∂ ∂ = and E/ 02 2β∂ ∂ > (starting from
saturation, only the first equation has to be fulfilled). Evidently, β
will be the solution of a trigonometric equation of type f(H, θ, β)¼
0, which in turn can be solved also numerically (and hence the
whole magnetization reversal process will be numerically de-
scribed). If just the coercive field HC is desired, it can be searched
as the field where the magnetization component along the field,
MF cos(θ�β), drops to zero, involving the additional angular con-
dition θ�β¼π/2. By introducing this condition in the above
equation, f(HC, θ, β)¼0, the coercive field can be expressed as
H K M/ sin2C F F0μ θ= ( ) , which however should be considered with
high caution. The above expression for the coercive field is valid
only for π/24θ4π/4, involving a progressive rotation of magne-
tization, whereas for π/44θ40 one deals with a sudden jump of
magnetization from the EA direction to the field direction (under a
negative applied field), with the coercive field coinciding to the
nucleation (switching) field [29].

Contrary, a full numerical approach of Eq. (1) provides, down to
a reasonable sampling, a general solution with respect to all pos-
sible parameters (magnetic field and angles θ) and in addition is
susceptible to be easily extended to the case of many EAs (either
discretes or with different angular distributions).

In order to provide the numerical general solution, is more
conveniently to write (1) as:

E H2 cos sin 2R R
2θ β β= − ( − ) + ( )

where HR¼H/Ha with Ha¼2KF/(MFm0) known as the anisotropy
field and ER¼E/KF. In this way one can work with relative (adi-
mensional) parameters expressing the energy in units of KF and
the applied field in units of anisotropy field. The variation of the
energy versus angle β for a simple S–W system with unique EA
and under different applied relative fields, HR, oriented along the
EA (θ¼0°) is shown in Fig. 2 (left side). Similar results but
obtained for an applied field perpendicular to the EA (θ¼90°)
are shown in the same Fig. 2 (right side). It may be observed in the
first case that starting from very high applied fields (HR»1), the
system is in a minimum energy state for β¼0° (this is the starting
point after saturation in positive field) and in the second case for
β¼90°. By decreasing the applied field, it may be seen in the first

Fig. 1. Typical configuration for a S–W bidimensional model. If the magnetic field is
applied along the Ox axis maxing angle θ with the EA, the macrospin (or the
spontaneous magnetization) will rotate progressively along the field direction, as
counted by either angle β or θ�β.
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