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a b s t r a c t

Within the research for apedal, contour variable locomotion systems, the influence of an alternating
magnetic field on the shape of the free surface of a magnetizable fluid (magnetic fluid) is studied. In the
framework of the Stokes approximation, for the case where the amplitude of the alternating component
of the applied magnetic field is much less than the magnitude of the permanent component, it is shown
analytically that a periodical traveling applied magnetic field can generate a transport of the fluid in a
prescribed direction. Numerical computations are performed to calculate and analyze the flow rate of the
fluid as a function of the parameters of the field and the fluid. This effect can be used in fluid transporting
engineering mini- and microsystems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Deformation of the free surface of a magnetic fluid can be used
for creating flows with nonzero flow rates both in the fluid itself
and in the ambient medium. Various peristaltic pumps based on
magnetic fluids have been already used in medicine for pumping
biological fluids, in particular, blood, since such pumps preserve
the structure of the fluids to be pumped. A number of new designs
for the peristaltic pumps based on magnetic fluids are proposed by
[1–3]. In addition, the deformation of the free surface of a mag-
netic fluid subjected to a time variable inhomogeneous magnetic
field can be used for creating propulsion devices, stepper motors
[4–6] and various kinds of valves, flow-rate meters and breakers.

The peristaltic flow of a viscous, incompressible fluid layer on a
horizontal substrate induced by a sinusoidal deformation wave
traveling along the fluid surface was studied by [7]. The pertur-
bation of the surface was defined kinematically and, therefore, the
nature of forces causing perturbations like these was not dis-
cussed. For the case of a magnetic fluid, these perturbations can be
realized by magnetic forces in an inhomogeneous magnetic field.
These forces can create a traveling surface deformation wave in
the fluid as was described previously.

In a homogeneous vertical magnetic field, the horizontal sur-
face of a magnetostatic fluid layer on a horizontal substrate can

become unstable at a certain critical value of the field [8]. Steady-
state spikes can appear on the surface without the simultaneous
occurrence of a flow inside the fluid. An inhomogeneous magne-
tostatic field also cannot create a flow of a magnetic fluid with a
flow rate. However, a traveling inhomogeneous magnetic field
induces a traveling surface wave, which affects a flow with a
nonzero flow rate inside the magnetic fluid. This phenomenon was
observed in experiments [9–11], which created traveling waves on
the surface of a magnetic fluid with a temporally and spatially
varying magnetic field. Either a flow of a nonzero flow rate [9] was
observed in these experiments or a sloping surface of the magnetic
fluid appeared [10,11].

Analytical studies of the flow in a magnetic fluid layer sub-
jected to a traveling magnetic field were performed by [12,9] using
the perfect fluid model. Viscosity was taken into account by [12],
who investigated analytically the flow of an infinitely deep layer of
a magnetic fluid in such a field.

Thin layered flows of heavy viscous magnetic fluids on hor-
izontal or cylindrical substrates in traveling magnetic fields were
investigated by [13,14]. The surface tension was taken into ac-
count. In these studies, closed-form expressions were obtained for
the magnetic field that created a prescribed sinusoidal traveling
wave on the surface of a thin layered magnetic fluid. The thickness
of the layer was assumed small in comparison with the wave-
length. The problem of determining the magnetic field for a pre-
scribed flow can be regarded as the inverse problem. The direct
problem, in which the flow of a thin layered heavy viscous

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jmmm

Journal of Magnetism and Magnetic Materials

http://dx.doi.org/10.1016/j.jmmm.2015.07.036
0304-8853/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: igor.zeidis@tu-ilmenau.de (I. Zeidis).

Journal of Magnetism and Magnetic Materials 395 (2015) 67–72

www.elsevier.com/locate/jmmm
http://dx.doi.org/10.1016/j.jmmm.2015.07.036
http://dx.doi.org/10.1016/j.jmmm.2015.07.036
http://dx.doi.org/10.1016/j.jmmm.2015.07.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2015.07.036&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2015.07.036&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmmm.2015.07.036&domain=pdf
mailto:igor.zeidis@tu-ilmenau.de
http://dx.doi.org/10.1016/j.jmmm.2015.07.036


magnetizable fluid on a horizontal substrate is determined for a
given traveling periodic magnetic field, was solved analytically by
[15]. In this study, analytical expressions for the average flow rate
in the finite-thickness layer were obtained.

In the present paper, the problem of determining the 2D flow of
a finite-thickness layer of a heavy viscous magnetic fluid in a
traveling periodic magnetic field is solved analytically for the case
where the amplitude of the magnetic field oscillations is small.
The surface tension is taken into account. The problem is solved in
the Stokes approximation under the assumption that the magnetic
permeability of the fluid is constant. Analytical expressions are
obtained for the velocity, pressure, and average flow rate of the
fluid.

2. Statement of the problem

Consider a planar flow (2D flow) of an incompressible mag-
netizable fluid bounded from below by a horizontal impermeable
plane, as depicted in Fig. 1. A periodic traveling magnetic field Ha

* is
applied. Here Ha

* is a applied magnetic field when a magnetizable
fluid is absent. The square of the applied magnetic field strength is
defined by
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Here, H0
2* is the static component of Ha

2* , A2 is the amplitude of the

superimposed periodic perturbation, kn is the wavenumber, ω* is
the angular frequency, tn is time, xn and zn are the horizontal and
vertical coordinates, respectively. The asterisks denote the di-
mensional variables and parameters. When the magnetizable fluid
is subjected to the magnetic field, its free surface is deformed and
acquires the shape described by the equation z h x t,* = *( * *). Let ν,
ϱ, and μ denote the kinematic viscosity, the density, and the
magnetic permeability of the fluid, respectively, g the acceleration
due to gravity, and pa the atmospheric pressure. All these para-
meters are assumed to be constant and 1 1μ( − )⪡ (noninduction
approximation). In what follows, all physical quantities are mea-
sured in CGS units.

2.1. Equations of motion and boundary conditions

In the dimensional variables, the equations of motion of a
magnetizable incompressible fluid in a specified coordinate sys-
tem can be represented as follows:
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where v ux = ** and v wz = ** are the horizontal and vertical compo-
nents of the velocity vector v, respectively, tn is time, pij

* are the

components of the stress tensor, F 0x =* , F gz = −* is the mass
density of the gravity force acting on the fluid, ∇j stands for dif-
ferentiation with respect to the corresponding coordinate, the
summation with respect to doubly repeated indices is assumed.
The stress tensor pij

* can be represented by
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where pn is the fluid pressure, ijτ * is the viscous stress tensor, δij is
the Kronecker delta. The magnetic stress tensor pHij has the form
[8]
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where Hi are the components of the magnetic field H* when the
magnetizable fluid distorts the applied magnetic field Ha

*; B j
* are

the components of the vector B* defined by B Hμ* = * inside the

magnetizable fluid and B H* = * outside the magnetizable fluid.
Using Maxwell's equations Bdiv 0* = and Hrot 0* = we obtain
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For fluids with constant μ this term disappears from (3), however,
a surface force density fm appears due to the step change in μ at
the interface. The expression for fm is [8]
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Here Bn
* is the component of the vector B* normal to the fluid

surface, Hτ* is the component of the magnetic field H* tangential to
the fluid surface (Bn

* and Hτ* are continuous on the surface), n is the
unit vector of the outer normal to the fluid surface. In the non-
induction approximation, when 1 1μ( − )⪡ , we have
B H O1 1n an

2μ= ( + ( − ) )* * and H H O1 1a
2μ= ( + ( − ) )τ τ* * . Therefore, ex-

pression (8) for fm can be written as
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The dynamic condition at the fluid surface in the dimensional
variables has the form

fp n
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where R is the radius of curvature of the surface at the respective
point, γ is the coefficient of surface tension, and ei is the unit
vector of the ith coordinate axis (e e e e,x z1 2= = ), the lower prime
stands for differentiation with respect to the corresponding vari-
able. The dynamic condition must be augmented by the kinematic
condition at the fluid surface and the no-slip condition at the rigid
base
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u w z0, 0. 13* = * = * = ( )Fig. 1. Schematic of the system under consideration.
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