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a b s t r a c t

The electro-magneto-thermo-elastic analysis problem of an infinite functionally graded (FG) hollow
cylinder is studied in the context of Green–Naghdi's (G–N) generalized thermoelasticity theory (without
energy dissipation). Material properties are assumed to be graded in the radial direction according to a
novel power-law distribution in terms of the volume fractions of the metal and ceramic constituents. The
inner surface of the FG cylinder is pure metal whereas the outer surface is pure ceramic. The equations of
motion and the heat-conduction equation are used to derive the governing second-order differential
equations. A finite element scheme is presented for the numerical purpose. The system of differential
equations is solved numerically and some plots for displacement, radial and electromagnetic stresses,
and temperature are presented. The radial displacement, mechanical stresses and temperature as well as
the electromagnetic stress are all investigated along the radial direction of the infinite cylinder.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The classical theory of thermoelasticity has an assumption of
infinite speed, which is contrary to physical observation. Various
generalized theories of thermoelasticity were developed to replace
the classical one of heat conduction in solids. The most important
generalized theories of thermoelasticity are Lord and Shulman's
(L–S) theory [1], Green and Lindsay's (G–L) theory [2], and Green
and Naghdi's (G–N) theory [3–5]. The first two theories (L–S and
G–L) introduced one or two relaxation time in the thermoelastic
process to eliminate the paradox of infinite speed for the propa-
gation of thermal signals. They also involved a hyperbolic-type
heat equation. They are structurally different and one cannot be
obtained as a particular case of the other. The third generalized
thermoelasticity theory of Green and Naghdi presented the gov-
erning thermoelasticity equations in three models. They obtained
coupled equations in displacement and temperature fields based
on finite wave speed.

The theory of electro-magneto-thermoelasticity is concerned
with the interacting effects of the applied electromagnetic field on
the elastic and thermoelastic deformations of a solid body. This

theory has aroused much interest in many industrial applications,
particularly in nuclear devices, where there exists a primary
magnetic field. Various investigations are to be carried out by
considering the interactions among electric, magnetic, thermal
and strain fields. Analyses of such problems also influence various
applications in biomedical engineering as well as in different
geomagnetic and electric studies. The development of the inter-
actions of an electromagnetic field, the thermal field, and the
elastic field is available in many studies. Recently, Zenkour and his
colleagues [6–10] have presented the analysis of functionally
graded piezoelectric cylinders and plates in a hygrothermal
environment.

The theory of thermoelasticity without energy dissipation of
Green and Naghdi [4] includes the “thermal displacement gra-
dient” among its independent constitutive variables, and differs
from the previous theories in that it does not accommodate dis-
sipation of thermal energy. The propagation of thermoelastic
waves in different structures is studied on the basis of Green and
Naghdi's (G–N) generalized thermoelastic theory (without energy
dissipation). Several investigations relating to thermoelasticity
without energy dissipation theory have been presented by Chan-
drasekharaiah [11,12], Sharma and Chouhan [13], Roychoudhuri
and Bandyopadhyay [14], Roychoudhuri and Dutta [15]. The cou-
pled thermo-elasticity based on the G–N theory without energy
dissipation is developed for infinite and finite functionally graded
(FG) thick hollow cylinder using hybrid Galerkin finite element
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and Newmark finite difference methods by Hosseini and co-
workers [16,17]. The propagation of thermoelastic waves in or-
thotropic spherical curved plates subjected to stress-free, iso-
thermal boundary conditions is investigated in the context of the
G–N generalized thermoelastic theory without energy dissipation
[18]. Yu et al. [19] have investigated the wave propagation in cir-
cumferential direction of transversely isotropic cylindrical curved
plates.

In the present paper, we have considered the electro-magneto-
thermo-elastic problem which involved a hyperbolic type heat
equation. The generation of radial displacement, mechanical
stresses and temperature as well as the electromagnetic stress in
an infinite FG elastic cylinder placed in a constant primary mag-
netic field are discussed. The governing equations are transformed
into dimensionless forms and their solutions are obtained using
the finite element approach. The outline of the coupled finite
element solutions procedure gives the values of displacement and
temperature using initial conditions. Numerical results are pre-
sented for the variation of the temperature, displacement, and
stresses with the time and along the radial direction of the FG
hollow cylinder. The effect of FG parameter is also investigated.

2. Formulation of the problem

Let us consider a long cylinder made of functionally graded
material. The cylindrical coordinates system r z, ,θ( ) is used with z-
axis coinciding with the axis of the cylinder. The material prop-
erties of the FG cylinder are assumed to be function of the volume
fraction of the constituent materials. The functionally graded be-
tween the physical properties and the radial direction r for cera-
mic and metal FG cylinder is given by [20–22]
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where Pc and Pm are the corresponding properties of ceramic (outer
surface) and metal (inner surface), respectively, a is the inner ra-
dius and b is the outer radius of the cylinder. Note that, the
parameter n is the volume fraction exponent which takes positive
real values. The value of n equal to zero represents a fully metal
cylinder. According to this distribution, the inner surface r a( = ) of
the FG cylinder is pure metal whereas the outer surface r b( = ) is
pure ceramic.

The strain axis is considered to be symmetric about the z-axis.
We have only the radial displacement u ur ≡ which is independent
of θ and z. In a generalized plane strain, we suppose that the
planes perpendicular to the z-axis and ur is a function of the radial
direction r and the time t only. So, the components of the stain
tensor eij are given by
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The cylinder is placed in a constant primary magnetic field H0.
The medium is assumed to be non-ferromagnetic and ferroelectric.
Neglecting the Thompson effect, the simplified Maxwell's equa-
tions of electro-dynamics for perfectly conducting elastic medium
are as follows:
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in which H
→

is the magnetic field, E
→

is the electric field, j
→

is the

current density, u→ is the mechanical displacement field, h
→

is the
perturbed magnetic, and η is the magnetic permeability.

The equations of motion in the absence of the body forces are
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where ρ is the material density of the cylinder and it is also con-
sidered to be a function of r . The symbol j,( ) means differentiation
with respect to x j. The mechanical stress tensor ijσ and Maxwell's
electromagnetic stress tensor ijτ are given, respectively, by
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where ijδ is Kronecker's delta function, T T T0Δ = − in which T0 is
the absolute temperature, λ and μ are Lamé's coefficients, η is the
magnetic permeability, 3 2γ λ μ α= ( + ) is the stress temperature
modulus, in which α is the linear thermal expansion.

The magneto-elasto-dynamic equation, Eq. (5), in the radial
direction of the FG hollow cylinder is given by

r r
f r

u

t
1

,
7

rr
rr r

r
2

2

σ
σ σ ρ

∂
∂

+ ( − ) + = ( )
∂
∂ ( )θθ

where

f
r

, 8r
rrτ

=
∂
∂ ( )

is defined as Lorentz's force, and

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫

⎬

⎪⎪⎪⎪

⎭

⎪⎪⎪⎪

r
u
r

u
r

r
u
r

r T T

r
u
r

u
r

r
u
r

r T T

r H
u
r

u
r

2 ,

2 ,

.
9

rr

rr

0

0

0
2

σ λ μ γ

σ λ μ γ

τ η

= ( ) ∂
∂

+ + ( ) ∂
∂

− ( )( − )

= ( ) ∂
∂

+ + ( ) − ( )( − )

= ( ) ∂
∂

+
( )

θθ

The heat conduction equation according to Green and Naghdi's
theory [3–5] is given by
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where ce is the specific heat at constant strain, and K⁎ is the ma-
terial constant characteristics of the theory (the thermal con-
ductivity). Generally, this study assumes that λ, μ, γ , K⁎, η, ce and ρ
of the FG cylinder change continuously through the radial direc-
tion of the hollow cylinder and obey the gradation relation given
in Eq. (1).

3. Solution of the problem

Introducing the following dimensionless variables may be
simplifying the solving process
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Here and in what follows the sup-index ‘m’ denotes quantities
for the homogeneous metal material while the sup-index ‘c’ de-
notes quantities for the homogeneous ceramic material. The
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