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Abstract Combining the general Struble’s technique and homotopy perturbation method, an ana-

lytical technique has been presented to determine approximate solutions of strongly nonlinear dif-

ferential systems with severe damping effect in the presence of an external force. The method is

illustrated by examples. The approximate solutions show a good coincidence with corresponding

numerical solution (considered to be exact). Moreover, it provides better result than other existing

solutions (derived by several analytical methods).
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Krylov–Bogoliubov-Mitropolskii (KBM) [1,2] method is one

of the most widely used methods to obtain the approximate
solutions of weakly nonlinear differential systems. Popov [3]
extended the method to nonlinear damped oscillatory systems.
Bojadziev et al. [4] presented a comparison of Poincare [5] and

KBMmethods. Shamsul [6] developed a general Struble’s tech-
nique to determine approximate solution of an n-th order
weakly nonlinear differential system. The results of Shamul’s

[6] are similar to those obtained by extended KBM method
(by Popov [3]). Bojadziev [7] studied a damped forced weakly
nonlinear system. Shamsul [8] extended KBM method for

solving an n-th order time dependent nonlinear differential
system in which an external periodic force acts. Some weakly
nonlinear systems were also studied in [9–15]. Nagy and

Balachandran [16] utilized perturbation method to investigate
jump phenomena of weakly nonlinear systems in which a weak
damping force acts. Recently, strong nonlinear differential sys-

tems have been investigated in [17–21]. Lakrad and Belhaq [22]
used multiple scales technique to find periodic solutions of
strongly nonlinear oscillators for free vibration. Pakdemirli

et al. [23] used multiple scales Lindstedt-Poincare (MSLP) to
determine approximate solution for strongly nonlinear
damped system in the presence of an external force. He [24]
developed homotopy perturbation method to solve strongly

nonlinear systems. But it [24] is useless when the damping
or/and external forces act on the systems. On the contrary,
the classical perturbation methods [1–16] are valid only for

weakly nonlinear systems (see [8] for details). Thus the combi-
nation of two methods (perturbation method and homotopy
perturbation method) is needed to handle the strongly

nonlinear differential systems with strong damping effect. In
this article, combination of the general Struble’s technique
[6] and homotopy perturbation method [25,26] has been
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utilized to obtain approximate solutions of strongly nonlinear
problems with severe damping effect. The solution nicely
agrees with the numerical solution. It is noted that, the solu-

tion obtained in [23] is valid for the strong nonlinear problems
with small damping effects.

2. The method

Let us consider a second order time dependent strongly nonlin-
ear, non-autonomous differential system

€xþ 2k _xþ x2
0x ¼ efðx; _xÞ þ e1EUðmtÞ; ð1Þ

where over dot denotes the differentiation with respect to t and

x0 P 0; k; E; m are constants. Herein e1 and e denote small
and large parameters respectively, x0 is the natural frequency
and UðmtÞ is a periodic function. The nonlinear function, fðx; _xÞ
satisfies the condition fð�x;� _xÞ ¼ �fðx; _xÞ.

In the previous articles [23,27], k (damping constant) was
considered small but for large values of k, the solutions

obtained in [23,27] do not provide desire results. The main
exclusive aim of this article is to remove this limitation.

In order to use homotopy perturbation method, we may

rewrite Eq. (1) in the form

€xþ 2k _xþ x2x ¼ ðx2 � x2
0Þxþ efðx; _xÞ þ e1EUðmtÞ; ð2Þ

where x is an unknown frequency of the oscillator.
For Eq. (2) we can establish the following homotopy:

€xþ 2k _xþ x2x ¼ p½ðx2 � x2
0Þxþ efðx; _xÞ þ e1EUðmtÞ�; ð3Þ

where p is the homotopy parameter.
When p ¼ 0, Eq. (3) becomes a linear equation and it has

two eigen-values, say k1 ¼ �kþ iq; k2 ¼ �k� iq; q ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2
p

; k < x. Thus the unperturbed solution becomes

xðt; 0Þ ¼ a1e
k1t þ a2e

k2t where a1 and a2 are constants.

On the other hand, Eq. (3) becomes original Eq. (1), when
p ¼ 1.

When p – 0, the approximate solution of Eq. (3) takes the

form (see [6] for details)

xðt; pÞ ¼ a1ðtÞek1t þ a2ðtÞek2t þ pu1ða1; a2; tÞ þ . . . : ð4Þ

Now, Eq. (3) can be written in the following form

ðD� k1ÞðD� k2Þx ¼ p½ðx2 � x2
0Þxþ efþ e1EUðmtÞ�; ð5Þ

where D ¼ d=dt; k1 ¼ �kþ iq; k2 ¼ �k� iq; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k2
p

;
k < x.

It can be considered that a1 and a2 are time-dependent func-
tions (rather than constants) on the left-hand side of Eq. (5).

Substituting Eq. (4) into Eq. (5), we obtain

ðD� k1ÞðD� k2Þða1ek1t þ a2e
k2t þ pu1 þ . . .Þ

¼ p½ðx2 � x2
0Þða1ek1t þ a2e

k2t þ pu1 þ . . .Þ þ efþ e1EUðmtÞ�

or

ðD�k2Þð _a1ek1tÞþðD�k1Þð _a2ek2tÞþðD�k1ÞðD�k2Þðpu1Þþ . . .

¼ p½ðx2�x2
0Þða1ek1tþa2e

k2tþpu1þ . . .Þþ efþ e1EUðmtÞ�; ð6Þ

since ðD� k1Þða1ek1tÞ ¼ _a1e
k1t and ðD� k2Þða2ek2tÞ ¼ _a2e

k2t.
Let us consider the terms through OðpÞ. Then, Eq. (6)

becomes

ðD� k2Þð _a1ek1tÞ þ ðD� k1Þð _a2ek2tÞ þ ðD� k1ÞðD� k2Þðpu1Þ
¼ p½ðx2 � x2

0Þða1ek1t þ a2e
k2tÞ þ efþ e1EUðmtÞ�: ð7Þ

Herein the nonlinear function f can be expanded in a Taylor

series as f ¼
P1; 1

m1¼0; m2¼0Fm1 ;m2
eðm1k1þm2k2Þt and the unknown

function u1 can be found in terms of the variables a1; a2 and

t, under the restriction that u1 excludes the term

Fm1 ;m2
eðm1k1þm2k2Þt of f when, m1 �m2 – � 1. On the other

hand, _a1 and _a2 respectively, contain the term

Fm1 ;m2
eðm1k1þm2k2Þt when m1 �m2 ¼ 1 and m1 �m2 ¼ �1. This

assumption takes u1 free from secular terms, i.e. and

t cos t; t sin t. It is clear that the first term of the left side of

Eq. (7) contains a term with ek1t and the second term f of the

right side of the same equation contains the term eðm1k1þm2k2Þt.

Since, k1 ¼ �kþ iq; k2 ¼ �k� iq, then ek1t and eðm1k1þm2k2Þt,

respectively become eð�kþiqÞt and eð�kðm1þm2ÞþiqÞt, where

m1 �m2 ¼ 1. We observe that both ek1t and eðm1k1þm2k2Þt are

related to eiqt, and the terms with ek1t and eðm1k1þm2k2Þt of Eq.
(7) are equated. In a similar way, we equate the terms with

ek2t and eðm1k1þm2k2Þt, where m1 �m2 ¼ �1 of Eq. (7). On other

hand, the third term of the right side of Eq. (7) contains peri-

odic function UðmtÞðeimt; e�imtÞ. Since eimt � eiqt ¼ Oðe1Þ and

e�imt � e�iqt ¼ Oðe1Þ, two right-handed terms, eimt and e�imt of
Eq. (7) will be added respectively, to the equations of _a1 and

_a2. But u1 never contains the terms eimt and e�imt, when

m� 1 ¼ Oðe1Þ (see[6] for details).
Now, equating the coefficients of ek1t and ek2t on both sides

of Eq. (7), the following variational equations can be obtained
as

ðD�k2Þð _a1ek1tÞ¼ p½ðx2�x2
0Þa1ek1tþ e

X1;1
m1¼0; m2¼0

Fm1 ;m2
eðm1k1þm2k2Þt

þ e1Ee
imt�; m1�m2¼ 1; ð8Þ

ðD�k1Þð _a2ek2tÞ¼ p½ðx2�x2
0Þa2ek2t

þ e
X1;1

m1¼0; m2¼0
Fm1 ;m2

eðm1k1þm2k2Þt

þ e1Ee
�imt�; m1�m2¼�1; ð9Þ

This leaves the following perturbational equation:

ðD�k1ÞðD�k2Þu1¼
X1;1

m1¼0;m2¼0
eFm1 ;m2

eðm1k1þm2k2Þt; m1�m2 – �1:

ð10Þ

In order to obtain the first approximate solution, it can be
considered that a1 and a2 are constants in the right-hand sides
of Eqs. (8)–(10); so that the particular solutions of Eqs. (8) and
(9) are

ð€a1 þ ðk1 � k2Þ _a1Þek1t ¼ p½ðx2 � x2
0Þa1ek1t

þ e
X1; 1

m1¼0; m2¼0
Fm1 ;m2

eðm1k1þm2k2Þt þ e1Ee
imt�; ð11Þ

ð€a2 þ ðk2 � k1Þ _a2Þek2t ¼ p½ðx2 � x2
0Þa2ek2t

þ e
X1; 1

m1¼0; m2¼0
Fm1 ;m2

eðm1k1þm2k2Þt þ e1Ee
�imt�: ð12Þ

The particular solutions of Eq. (10) are given by
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