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The parameters of Bouc-Wen hysteresis model are identified using a Modified Firefly Algorithm. The
proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm
is used to find the model parameter values that results in the least amount of error between a set of given
data points and points obtained from the Bouc-Wen model. The performance of the algorithm is com-
pared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evo-
lution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization
algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy
in identifying Bouc-Wen model parameters. Finally, the proposed method is used to find the Bouc-Wen
model parameters from experimental data. The obtained model is found to be in good agreement with
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1. Introduction

Hysteresis is a fundamental property which is found in a wide
range of physical systems such as magnetism, piezo-electric ma-
terials, and mechanical vibration. For analysis of such systems,
accurate measurement and modeling of hysteresis phenomenon is
necessary [1,2]. Several mathematical models have been devel-
oped to describe the hysteresis process, such as Bouc-Wen model
[3,4], Jiles-Atherton model [5], and Preisach model [6,7]. The
Bouc-Wen model is a smooth endochronic model which can ac-
curately model a variety of hysteresis patterns. As a result, it has
become a very useful model for engineers. However, the highly
nonlinear nature of the model along with a large number of model
parameters has made the identification of the Bouc-Wen system a
challenging problem [8].

The Bouc-Wen model requires seven parameters to describe
the hysteresis phenomenon. Other models require less parameters
(for example, Jiles-Atherton model only requires five parameters).
The effect of the parameters on the shape of the hysteresis loop is
highly nonlinear and difficult to relate [9]. For these reasons, the
Bouc-Wen model has been comparatively less used in the field of
magnetism [10]. It has been reported that Jiles-Atherton can
predict the dynamic effects in ferroelectric material more accu-
rately compared to Bouc—Wen model [11]. However, the model has
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been receiving more attention in recent times due to the devel-
opment of efficient numerical algorithms that can be used to
identify the model parameters more accurately [10,12]. The dy-
namic performance of the model is expected to improve and be-
come comparable to Jiles—Atherton model if such accurate para-
meter values are used.

Bouc-Wen model is mostly used for inverse problems where a
set of experimental data points are given and it is required to
evaluate the model parameters that will produce a curve which
follows the experimental data with least error [13]. Several
methods have been discussed in the literature to accomplish this,
including analytic approaches, Gauss-Newton, simplex, reduced
gradient method, and extended Kalman filters [8,14]. Due to the
nonlinear nature of the problem, stochastic optimization algo-
rithms have been found to be well suited to solve it. Algorithms
such as Genetic Algorithm (GA) [13], Particle Swarm Optimization
(PSO) [15,16], and Differential Evolution (DE) [17,18] have been
used to solve this problem. To improve the performance, hybrid
algorithms [8] and multi-objective optimization [12] have been
used. Recently, Laudani et al. have used Metric-Topological Evo-
lutionary Optimization (MeTEO) to obtain the Bouc-Wen model
parameters [10]. Such algorithms have been used in many elec-
tromagnetic optimization problems [19,20]. Although these
methods have produced accurate results, newer and more robust
algorithms are continuously being utilized to obtain faster con-
vergence rate and higher accuracy. In this paper, a Modified Firefly
Algorithm (MFA) is used to estimate the parameters of the Bouc-
Wen model. The use of conventional or modified versions of FA for
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this problem have not been reported in the literature so far.

Firefly Algorithm (FA) is a population based stochastic optimi-
zation algorithm which is well suited for nonlinear problems
[21,22]. It has been successfully used in many engineering appli-
cations [23]. This paper proposes a modified version of FA (MFA)
and uses it to estimate the model parameters. To the best of the
authors’ knowledge, modified versions of FA similar to the pro-
posed MFA have not been reported in the literature yet. The pur-
pose of this work is to show the effectiveness of MFA in solving the
parameter identification problem. The performance of the MFA is
compared with standard FA, GA and DE and it is found that MFA
shows faster convergence rate with smaller percentage of error
among the four algorithms. In addition to comparative analysis,
the proposed MFA is also used to estimate Bouc-Wen model
parameter values of an amorphous material (VITROVAC 6025 F).
After the parameters are identified, the modeled hysteresis loop is
compared with measured value. It is seen that the results are
consistent with measured values, which verifies the effectiveness
of the proposed method.

The paper is organized as follows: Section 2 describes the
Bouc-Wen model equations. Section 3 presents overview of con-
ventional FA and presents MFA. Section 4 describes how the al-
gorithm was implemented and linked to the Bouc-Wen model
parameters. Simulation and results are discussed in Section 5 and
concluding remarks are given in Section 6.

2. Bouc-Wen model

The Bouc-Wen model is a system of nonlinear differential
equations given by [10,15]

X+ 2t0% + ao2X + (1 — e)w’z = u(t)
Z=— ylRiiz"'z — pRizI" + Ax 1

where u(t) = Bcos(wt) is a normalized forcing function [24]. From
(1), it can be seen that the Bouc-Wen model contains seven
parameters. The parameters are the rigidity ratio, @ (0 < a < 1), the
linear elastic viscous damping ratio, £ (0 < & < 1), the pseudo-
natural frequency of the system, @, (in rad/s), the hysteresis
amplitude controlling parameter, A, and hysteresis loop shape
controlling parameters /3, y and n (n > 1). Through proper choice of
these parameter values, a wide range of hysteresis loops can be
described. A detailed description of how these parameters affect
the hysteresis loop can be found in [9].

The variable z is a fictitious displacement related to the actual
displacement, x [15]. Plotting the variables z against x gives the
hysteresis loop. For a given set of values of the model parameters,
the system of differential equations given in (1) can be solved to
generate the loop. State space representations are found to be very
useful in solving the Bouc-Wen model [10]. The state space re-
presentation of (1) is given by

=Y
Yo = = 2tw,Y, — aolY; — (1 — )w2Ys + u(t)
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where [Y, Y, Y3 = [x % z]'. The three first order differential equa-
tions can be simultaneously solved numerically to obtain the
hysteresis loop [25].

3. Firefly Algorithm

FA is a population based metaheuristic global optimization

algorithm [21,23]. It was inspired by the behavior of a group of
fireflies. Along with DE and PSO, FA have found application in a
wide range of engineering areas [23]. This section starts with the
overview of FA. After that, the proposed MFA is discussed.

3.1. Overview of Firefly Algorithm

The FA starts the optimization process by defining the solution
space. The dimension of the solution space, D, is equal to the
number of parameters to be optimized. As optimizing the seven
parameter of Bouc—Wen model is required here, D=7. Each di-
mension is bounded by the allowed range of values of the para-
meters. The ranges can be obtained from the mathematical model,
physical considerations or trial-and-error based approaches. Next,
a set of random vectors w;, i=1,2...N, each representing the
position of a firefly in the D dimensional solution space is defined.
Here, N=population size, which denotes the number of fireflies.
Such set of N fireflies is called a generation. The position of each
firefly is a D dimensional vector. The position of the ith firefly is
given by

w; = Uy Uy Ul 3)

Each firefly represents a potential solution of the optimization
algorithm. For the Bouc-Wen model parameter identification
problem discussed in this paper, each dimension represents one of
the model parameters. The parameters are mapped as

(Ui Uiy - U] =[a By éw, AnpT 4)

Here, v is a scaling vector. The first generation of fireflies,

[u} u} ... u}], is randomly selected from a uniform distribution over
the solution space. Here, the superscript, G=1, denotes the gen-
eration number. The subsequent generations are obtained from
the operations of FA.

The quality of each potential solution (firefly position) is de-
fined by its fitness value. The fitness function, fﬁf(ui.] Uiy ... Uj7),
relates the optimization algorithm to the physical problem. It takes
the parameters to be optimized as inputs (each firefly position, u;)
and gives a single scalar output value. The better the potential
solution is, the higher the fitness value will be. The fitness function
for the current problem will be discussed in Section 4.

The fitness values of each of the N firefly, termed as the
brightness, I, are assigned by evaluating the fitness function [26].
The higher the fitness value is of a firefly, the brighter it is. When
the brightness of each firefly of the first generation is calculated,
the firefly positions are updated to form the second generation.
The motion of one firefly is influenced by the attractiveness of the
other fireflies. Each firefly follows a path that brings it closer to
other attractive fireflies. Relative attractiveness of firefly j to firefly
i, Ay, depends on the brightness of the fireflies as well as the
distance between the fireflies. It is given by the equation

_or2 .
Ay = {Aoe i if >
0 otherwise 5)
where Ay is the attractiveness at zero distance, and

Iy = fre W) = f5, W1 U5 ... Uj7) 6)
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Here, r; is the Euclidean distance between the two fireflies and o is
a FA process parameter denoting brightness gradient exponent. Eq.
(5) suggests that the brighter a firefly is, the more attractive it is to
other fireflies. However, brightness decreases with distance. So,
the further a firefly is to another, the less attractive it becomes.
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