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a b s t r a c t

We present a complete micromagnetic finite-difference code in fewer than 70 lines of Python. The code
makes a large use of the NumPy library and computes the exchange field by finite differences and the
demagnetization field with a fast convolution algorithm. Since the magnetization in finite-difference
micromagnetics is represented by a multi-dimensional array and the NumPy library features a rich in-
terface for this data structure, the code we present is an ideal starting point for the development of novel
algorithms.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Micromagnetic simulations have become an important tool for
the investigation of ferromagnetic nanostructures. A lot has been
published on algorithms and programming paradigms used for the
numerical solution of the micromagnetic equations and a variety of
open and closed source micromagnetic codes are available. These
codes can be roughly divided into those acting on regular cuboid
grids [1–3] and those acting on irregular grids [4–9]. Irregular-grid
codes usually employ finite-elements or fast-multipole methods for
spatial discretization [10]. A popular class of regular grid methods
applies the finite-difference method for the computation of the ex-
change field and a fast convolution for the computation of the de-
magnetization field [11]. In this work we present a complete mi-
cromagnetic code of the latter kind that is written in only 70 lines of
Python and that makes extensive use of the NumPy library [12].

The code we will present is not able to compete with mature
finite-difference codes in terms of performance and flexibility.
However, it delivers all essential building blocks of a micromagnetic
code and is therefore perfectly suited for prototyping new micro-
magnetic algorithms. In particular, the NumPy library is a good
choice for the code we will present, since the magnetization in fi-
nite-difference micromagnetics is represented by an n-dimensional
array and the NumPy library has a very powerful interface for n-
dimensional arrays that supports a large variety of operations.

The paper is structured as follows. In Section 2 we give a brief
overview of the micromagnetic model. In Sections 3–5 the

implementation of the most important micromagnetic subproblems is
described. The code we will present is validated by numerical ex-
periments in Section 6.

2. Micromagnetic model

The central equation of dynamic micromagnetics is the Land-
au–Lifshitz–Gilbert equation that describes the motion of a con-
tinuous magnetization configuration m in an effective field Heff is
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where γ is the reduced gyromagnetic ratio and 0α ≥ is a di-
mensionless damping constant. The effective field Heff is given by
the negative variational derivative of the free energy:
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where μ0 is the magnetic constant and Ms is the saturation mag-
netization. Contributions to the effective field usually include the
demagnetization field, the exchange field, the external Zeeman
field and terms describing anisotropic effects. In this work we
focus on the numerical computation of the demagnetization field,
see Section 3, and the exchange field, see Section 4, as well as the
integration of the Landau–Lifshitz–Gilbert equation, see Section 5.

For the numerical solution of (1) and (2) a regular cuboid grid is
used for the spatial discretization. Every simulation cell is of size

r r r1 2 3Δ × Δ × Δ and can be addressed by a multi-index i i i i( , , )1 2 3= .
All spatially varying quantities such as the magnetization m are
thus represented by an n-dimensional array:
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The Python library NumPy provides the class ndarray for this
purpose which supports a large number of operations. Despite
Python being a scripting language, all collective operations of
ndarray have a good performance due to the native im-
plementation of the NumPy library.

3. Demagnetization field

The demagnetization field accounts for the dipole–dipole in-
teraction of the elementary magnets. For a continuous magneti-
zation configuration the demagnetization field is given by
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where Ñ is called demagnetization tensor. This expression has the
form of a convolution of the magnetization m with the matrix
valued kernel Ñ . By choice of a regular grid this convolution
structure can also be exploited on the discrete level:
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where cellΩ describes a cuboid reference cell and ek is a unit vector in
direction of the kth coordinate axis. Here the magnetization is as-
sumed to be constant within each simulation cell and the field
generated by each source cell is averaged over each target cell. This
results in a sixfold integral for the computation of the discrete de-
magnetization tensor Ni j

˜
− . An analytical solution of (7) was derived

by Newell et al. [13]. The diagonal element N1,1 computes as

(8)
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where the auxiliary function f is defined by
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The elements N2,2 and N3,3 are obtained by circular permutation of
the coordinates:
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According to Newell the off-diagonal element N1,2 is given by
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where the function g is defined by
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Again, other off-diagonal elements are obtained by permutation of
coordinates:
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The remaining components of the tensor are obtained by ex-
ploiting the symmetry of Ñ , i.e. N Ni j j i, ,= .

Listing 1. Definition of auxiliary functions f and g. The very small
number eps is added to denominators in order to avoid division-by-
zero errors.

The calculation of the discrete demagnetization tensor in Python is
straightforward. Listing 1 shows the function definitions for the
auxiliary functions f and g. Note that fractions occurring in f and g
might feature zero denominators. However, limit considerations
show that all fractions tend to zero in this case. In order to avoid
division-by-zero errors in the implementation, a very small float-
ing point number eps is added to all denominators.

Listing 2. Assembly of the demagnetization tensor Ñ . Only the six
distinct components of the symmetric tensor are computed.
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