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We study current-induced dynamics of spin textures in thin magnetic nanowires. We derive effective
equations of motion describing the dynamics of the domain-wall soft modes associated with topological
defects. Because the magnetic domain walls are topological objects, these equations are universal and
depend only on a few parameters. We obtain spin spiral domain-wall structure in ferromagnetic wires
with Dzyaloshinskii-Moriya interaction and critical current dependence on this interaction. We also find
the most efficient way to move the domain walls by resonant current pulses and propose a procedure to
determine their dynamics by measuring the voltage induced by a moving domain wall. Based on
translationally non-invariant nanowires, we show how to make prospective magnetic memory nano-
devices much more energy efficient.

© 2015 Published by Elsevier B.V.

1. Introduction

Ferromagnets can be used to store and manipulate spin in-
formation, and new developments have created opportunities to
use them as active components in spintronic devices [1-4]. Ma-
jority of the ideas to employ ferro- and antiferromagnets for
memory or logic applications are related to the propagation of
domain walls (DWs), skyrmions or other topological spin textures.
This resulted in significant experimental [5-11] and theoretical
[12-32] progress in this direction. To study theoretically the pro-
pagation of the spin textures usually numerical solutions of the
Landau-Lifshitz—Gilbert (LLG) equation [13,15] are employed or
the dynamics of softest modes for the motion of the topological
textures is considered using collective coordinate approach. In this
paper we overview the latter approach and consider several im-
portant cases of its application to the DW dynamics.

As we will show, for the topologically robust spin textures the
equations of motion for their lowest modes are universal and can be
described by just a few parameters, which can be whether experi-
mentally measured or analytically calculated for rather simple models.
These softest modes are associated with the motion of topological
defects comprising the DWs, see Fig. 1. Similar type of equations de-
scribe the dynamics of skyrmions [32] or composite skyrmions (vor-
tex—antivortex pair with opposite magnetization polarizations at their
core) [33] in ferromagnets. Generally the lowest (zero) mode corres-
ponds to the translation of the spin texture as a whole along the

* Corresponding author.
E-mail address: olegt@imr.tohoku.ac.jp (O.A. Tretiakov).

http://dx.doi.org/10.1016/j.jmmm.2014.12.088
0304-8853/© 2015 Published by Elsevier B.V.

nanowire, which is thin enough to have a homogeneous magnetiza-
tion over its thickness. The other modes correspond to the texture
rotations or the internal dynamics of the its topological defects. Below
we mostly concentrate on the current driven DW dynamics, although
the magnetic field driven case has been extensively studied in the past
as well, see e.g. [34,18,19].

2. Model

We study the spin texture propagation by employing the LLG
equation for the magnetization (S) dynamics with adiabatic and
nonadiabatic current terms [13,15]:

S=SoX%—deo+ﬁjSon§o+aSoXSo. 1)
Here H is the magnetic Hamiltonian of the system, j is the electric
current in the units of velocity, f is the non-adiabatic spin torque
constant, « is the Gilbert damping constant, and o = d/dz is a de-
rivative along the wire. We look for a solution of equation (1) in
the form S(z, t) = So(z, £(t)) + s, where the time dependence &(t)
is weak, while s is small and orthogonal at each point to the
solution Sy of the static LLG equation. In other words, the spin
texture dynamics due to an electric current or other perturbations
can be parametrized by the time-dependent even-dimensional
vector &€(t) corresponding to the softest modes of spin texture
motion.

The equations for &(t) are called the effective equations of
motion. For thin ferromagnetic nanowires, the DWs are rigid
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Fig. 1. Types of possible domain walls which can be described by two-component
collective coordinate approach. The upper picture shows the simplest type of the
domain wall: transverse DW.

topological spin textures. The slow dynamics of the DW can be
described in terms of only two collective coordinates corre-
sponding to softest modes of motion. These modes are the DW
position zy and its conjugate variable - the tilt angle ¢ for the
transverse DW. For the vortex DW, ¢ served as the magnetization
angle defining the transverse position of the vortex in the wire
[18,19]. Up to the leading order in small dissipation (@ and f#) and
current, the equations of motion take the form

zo=— 1% +]J
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Here for simplicity we take the magnetic field H to be along the
wire (in the z direction), a,, = %fdz(azso)z, and E (&) = H5[So(z, &)]
is the energy of the domain wall [27] as a function of the soft
modes €. These equations are universal and do not depend on
details of the microscopic model. The only required input is the
energy of a static DW as a function of zg and ¢. The latter function
can be either evaluated by means of micromagnetic simulations or
an approximate analytical model, as well as experimentally
measured for a given nanowire through induced emf due to the
DW dynamics [27].

3. Results and discussion
3.1. Translationally noninvariant nanowires

Egs. (2) and (3) allow the description of the DW dynamics in
translationally noninvariant nanowires [30]. Thus one can treat
the effects of DW pinning in a wire and consider nanostrips of
varying width. As one of the examples of the usage of Egs. (2) and
(3) we consider a magnetic memory device based on a flat hour-
glass-shaped nanostrip sketched in Fig. 2 (a). We propose a non-
volatile device, which employs the magnetization direction within
the DW as the information storage. Without applied current, a
transverse DW stays at the narrowest place in the nanostrip. When
a certain current pulse is applied, the DW magnetization angle ¢
flips from O to 7. At the intermediate step of this switching pro-
cess, the DW also deviates from the narrowest part of the nano-
strip but at the end it comes back with the opposite magnetization
direction in the center of the DW. At a later time, the same current

pulse can move it back to the original configuration.

The time that it takes to switch the magnetization depends on
the current pulse shape. During this process the main energy loss
in a realistic wire is the Ohmic loss. How much energy is needed
for a single switching also depends on the parameters of the
current pulse. Using Eqs. (2) and (3) we find the optimal current
pulse shape for a given switching time and the minimal required
energy per flip as a function of the switching time, Fig. 2(b) [30].

3.2. Ferromagnetic nanowires with Dzyaloshinskii-Moriya
interaction

One can also use Eqgs. (2) and (3) to describe the ferromagnetic
nanowires with Dzyaloshinskii-Moriya interaction (DMI) [23].
Recently the spiral structure of magnetization due to DMI has been
experimentally observed [35-37]. To describe the spin spiral DWs
in ferromagnetic nanowires one should use the Hamiltonian:

H = / dz[%(aZS)z + DS‘(ez x azs) - /153]. @

Here S is the normalized magnetization vector, ] > 0 is the ex-
change interaction constant, D is the DMI constant assuming that
the wire is cut or grown along the DMI vector. We consider a thin
uniform ferromagnetic wire which can be modeled as a one-di-
mensional classical spin chain, where the wire is along the z-axis.
The last term in Eq. (4) is due to uniaxial anisotropy (with the
anisotropy constant 1) which shows that the system favors the
magnetization along the wire. A transverse anisotropy is also
added later as a perturbation. By minimizing the Hamiltonian (4)
with the appropriate boundary conditions one can get a spin spiral
DW. Using the equations of motion (2) and (3) with the Hamilto-
nian (4), one obtains [23]

. _p. (a=p)( +ard)|. .
e R P [J Je Sm(2¢)].

(5)

i (a=pa . .
¢ = 0 +a2ad [J Je sm(2¢)].
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where j. is the critical current above which the spin spiral starts
rotating around the axis of the nanowire, A is the DW width (4¢ is
the DW width in the absence of DMI), and I" = D] is the pitch of
the spin spiral. A snapshot of a moving spin-spiral DW in a na-
nowire with DMI is shown in Fig. 3. Based on these equations one
can study the influence of DMI on the critical current and drift
velocity of domain wall [23].

3.3. Time-dependent currents and Ohmic losses

For the highest performance of DW memory or logic devices, it
is important to minimize the Ohmic losses in the wire, which are
due to the resistance of the wire itself and the entire circuit. They
are proportional to the time-averaged current square, (j2). Their
minimization has a twofold advantage. First, one can increase the
maximum current which still does not destroy the wire by ex-
cessive heating and therefore move the DWs with a higher velo-
city, since the DW velocity increases with the applied current.
Second, it creates the most energy efficient memory devices and
increases their reliability.

These goals can be achieved by utilizing “resonant” time-de-
pendent current pulses, which allow us to gain a significant re-
duction of Ohmic losses. Based on the DW equations of motion, we
show in the next section that all thin wires can be characterized by
three parameters obtained from dc-driven DW motion experi-
ments: critical current j,, drift velocity V. at the critical current,
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