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a b s t r a c t

The Stoner criterion is known as a useful tool predicting the ferromagnetic state (FM) in metals. This
criterion is not applied to nanoobjects, because of their discrete electron spectrum. In our paper we
consider a generalization of this criterion, which can be applied to magnetism in semiconductor
nanoobjects. To derive it, we compare total energies of the FM and non-magnetic states using many-body
perturbation theory. The derived criterion has compact form and may be useful for prediction of fer-
romagnetism in nanoobjects. To check its precision, we performed first-principle calculations of several
semiconductor nanoobjects in the FM and non-magnetic states and compared their results with pre-
dicted ones.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Engineering of nanomaterials possessing both semiconductor
and magnetic properties is of great importance for spintronics,
nanoelectronics, medicine and other applications. Since the atomic
structure and properties of small nanoobjects are commonly dif-
ferent from the structure and properties of related solids, char-
acteristics of bulk materials are not reliable guidelines for nano-
material design. Experimental information about nanoparticles
and other artificial nanoobjects frequently is scarce, so pure em-
pirical approach to the design of magnetic nanosemiconductors is
not efficient. In this situation, first-principles calculations based on
density functional theory (DFT) are among most practical instru-
ments of design. They provide specific and rather reliable results
for the characteristics of nanoobjects. For the high efficiency of
material quest it is desirable to have the criterion of magnetism in
nanosemiconductors, which permits a fast evaluation of promising
materials. An example of this type is the famous Stoner criterion
widely used for the prediction of magnetism in metallic alloys and
compounds [1–4]. The Stoner criterion says that a metal is instable
relative to spontaneous magnetization, when N(EF)Im41, where
N(EF) is the electron density of states at the Fermi level and Im is
the Stoner parameter describing exchange–correlation interaction
of spins. This criterion does not apply to nanosemiconductors, as
for them N(EF)¼0, because of the HOMO–LUMO gap and a discrete
electron spectrum. Furthermore, the standard derivation of

Stoner's criterion from the response to infinitesimally small mag-
netization is not suitable to nanosystems, where only finite mag-
netization caused by spin flipping of one electron can be gener-
ated. For these reasons the derivation of the magnetism criterion
for semiconductor nanoobjects should be based on different ap-
proach, which takes into account the features of electronic struc-
ture in nanosystems. The present paper contains the derivation of
such criterion and its numerical testing by the example of several
magnetic and non-magnetic nanoobjects.

2. Theory

In our consideration we deal with a finite semiconductor sys-
tem having an even number of electrons N¼2n. The case of an odd
number of electrons is not discussed, as it always gives nonzero
magnetization. To derive the magnetism criterion, we compare the
total energies of states with magnetic moments M¼0 μB and
M¼2 μB, that is, evaluate energy gain caused by the spin-flipping
of one electron. The DFT equation for the total energy of such
system at zero temperature is
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Here εis and Veff(r,s) are, respectively, the eigenvalues and efficient
potential of the Kohn–Sham equation for electrons with a spin
projection s, VC(r�r′)¼e2/|r�r′| is the bare Coulomb interaction,
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ρ(r)¼ρ↑(r)þρ↓(r) and m(r)¼ρ↑(r)�ρ↓(r) are electron and spin
densities, respectively, and Exc[ρ,m] is the exchange–correlation
energy functional. The efficient potential Veff(r,s) is determined
by the extremum condition δEtot/δρs(r)¼0, which provides
Veff(r,s)¼Vext(r)þVH(r)þVxc(r,s), where Vext(r) is the external po-
tential from Eq. (1) (the potential of atomic nuclei), VH(r)¼

R
dr′VC

(r�r′)ρ(r′) is the Hartree potential, and Vxc(r,s)¼δExc[ρ,m]/δρs(r)
is the exchange–correlation potential for electrons with the spin
projection s. In Eq. (1), the sum of the first two terms is the kinetic
energy, while the rest terms represent the potential energy (its
electron–nuclei, Hartree and exchange–correlation contributions).

The main difference between the nonmagnetic and magnetic
states of a system arises from different electron occupation num-
bers fis. In the nonmagnetic state (M¼0 μB) they are fi↑¼ fi↓¼1 for
1r irn and fi↑¼ fi↓¼0 otherwise, while in the magnetic state with
M¼2 μB there are fi↑¼1 for 1r irnþ1, fi↓¼1 for 1r irn�1 and
fi↑¼ fi↓¼0 otherwise. This change in occupation numbers causes
the change of electron and spin densities and, as a result, changes
in the efficient potential Veff(r,s) and the eigenvalues εis. We in-
troduce following notations for changes in the spin-components of
density Δρ ρ ρ= ˜ −σ σr r r( ) ( ) ( )/2 (quantities related to the magnetic
state are marked by a wave at the top):
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Here Δρext,s(r) are changes in density spin-components caused by
the reoccupation of n-th and nþ1-th electron states, which act as
an external perturbation, while δρs(r) are changes caused by
electron response to Δρext,s(r), that is, electronic correlations. In a
similar manner, introducing Δρ(r)¼Δρ↑(r)þΔρ↓(r)¼Δρext(r)þ
δρ(r) and m(r)¼Δρ↑(r)�Δρ↓(r)¼mext(r)þμ(r), it is easy to ex-
press changes in Veff(r,s) in the terms of Coulomb and exchange–
correlation interactions:

∫ ρ ρΔ σ = ′ ′ Δ ′ − Δ −σV d V r I r r I r m r(r, ) r ( , r ) (r ) ( ) ( ) ( ) ( ) (3)eff c mxc

where the exchange–correlation interactions are of both charge–
charge and spin–spin types: � Ixc(r,r′)¼δ2Exc/δρ(r)δρ(r′) and � Im
(r,r′)¼δ2Exc/δm(r)δm(r′).

Our derivation assumes that changes in electronic structure
caused by transition from the state M¼0 μB to the state M¼2 μB

are rather small and their effect can be estimated with perturba-
tion theory. Using expansion to the second order in Δρs(r) and
ΔVeff(r,s), we obtain for changes in the kinetic energy of the sys-
tem:
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This equation was obtained by expanding the sum of one-
electron energies ε~is in powers of ΔVeff(r,s) (to the second order)
and combining result with

R
drρ~s(r)V

~
eff(r,s) expressed through

Δρs(r) and ΔVeff(r,s). Similar expansion of the potential energy
contribution provides:
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The last term in Eq. (4) and the first term in Eq. (5) are of the
first order in Δρ(r). These terms are identical and have opposite
signs. In the total energy they cancel each other, so ΔEtot
contains only the eigenvalue difference of reoccupied electron

states (εnþ1�εn) and the terms of the second order:
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The total cancellation of first order terms in Eq. (6) is an ex-
pected result of the extremum condition δEtot/δρs(r)¼0. For
practical use it is convenient to express ΔVeff(r,s), δρs(r), Δρ(r)
and m(r) in terms of “external” perturbations Δρext(r)¼ |ψnþ1(r)|2

� |ψn(r)|2 and mext(r)¼ |ψnþ1(r)|2þ |ψn(r)|2:
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Here ε is the dielectric function operator, fm is an operator
causing spatial redistribution of spin moment, and �π0(r,r′) is the
susceptibility of non-interacting electrons. Using these equations,
we obtain from Eq. (6) the final formula for ΔEtot:
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Considering this equation, we see that transition to the mag-
netic state reduces the total energy of a system ΔEtoto0, if its
non-magnetic state has a narrow HOMO–LUMO gap ΔHOMO–LUMO

¼εnþ1�εn, the spatial redistribution of electron charge Δρext(r)
does not increase significantly Coulomb energy, and the spin–spin
interaction provides a large energy gain. These are qualitative re-
quirements to a nanoobject for its spontaneous transition to the
magnetic state.

It is of interest to compare Eq. (8) with the Stoner criterion. One
may note that Eq. (8) contains the contribution arising from spatial
charge redistribution Δρext(r). This contribution is absent in the
Stoner criterion related to metals, as for them only small magne-
tization with ψnþ1(r)Eψn(r) is considered, so for metals Δρext(r)
E0 and mext(r)E2|ψn(r)|2. With this refinement and considering
inverse energy difference 2/(εnþ1�εn) as a discrete analog of
N(EF), we get the conclusion that for metals the present criterion
transforms exactly to Stoner’s one.

3. Calculations

To check the derived criterion, we calculated the electronic
structure and spin polarization of four semiconductor organic
molecules: the phthalocyanines of nickel, iron and chromium
(NiPc, FePc, and CrPc), as well as the bis(benzene)chromium mo-
lecule Cr(Bz)2. These molecules containing magnetic atoms have
the planar (MPc, M¼Ni, Fe, and Cr) or sandwich-type (Cr(Bz)2)
structure with the diameter of 1.0–1.5 nm (Fig. 1) and their mag-
netic properties (or nonmagnetic behavior) are known from ex-
periment [5,6].

Our first-principles calculations were made by the ORCA code
[7] with effective core potential basis sets from EMSL basis set li-
brary [8–10]. The Stuttgart–Dresden–Bonn pseudopotentials [9,10]
and DFT approach with the exchange–correlation functional
PWLDA [11] were used. The relaxation of atoms to their equili-
brium positions was conducted until forces acting on atoms
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